Discrete-math 2

1

Which of the following is equivalent to the negation of the statement: ”For every chef, there exists a dish they make that is tasty."C={ chef }D={ dish }M(c,d)=c makes dDc={ddDM(c,d)}T(d)=d is tastyStatement is: cCdDc:T(d)Negated statement is: ¬(cCdDc:T(d))(h)cC¬(dDc:T(d))(b)cCdinDc¬T(d)(f)Answer: Statements (h), (b), (f)

2

Which of the following is equivalent to the negation of the proposition:xyz(P(x,y,z)P(z,x,y))¬(xyz(P(x,y,z)P(z,x,y)))x¬(yz(P(x,y,z)P(z,x,y)))xy¬(z(P(x,y,z)P(z,x,y)))(d)xyz¬(P(x,y,z)P(z,x,y))xyz(¬P(x,y,z)¬P(z,x,y))(a)Answer: Statements (d), (a)

3

Q over RFind a predicate Q for which the statement(xyQ(x,y)yxQ(x,y))xy(Q(x,y)Q(y,x))is falseQ(x,y)=x>yxyQ(x,y)Txy=x1:x>yTyxQ(x,y)Tyx=y+1:x>yTxy(Q(x,y)Q(y,x))FQ(x,y)Q(y,x)x>yy>xF(TT)FTFFAnswer: Q(x,y)=x>y

4a

P(x,y) over ZDisproof: S(x,y)xyP(x,y)xyP(x,y)P(x,y)=(x>0)(y>y1)xyP(x,y)TxyP(x,y)FS(x,y)TFF

4b

P(x,y) over ZDisproof: S(x,y)xyP(x,y)xyP(x,y)P(x,y)=(y>0)(x>x1)xyP(x,y)TxyP(x,y)FS(x,y)TFF

4c

P(x),Q(x) over ZProof: S(x)x(P(x)Q(x))(xP(x)xQ(x))Let (xP(x)xQ(x))FThen xP(x)F or xQ(x)FThen x(P(x)Q(x))FThen the case where x(P(x)Q(x))T and (xP(x)xQ(x))F is impossibleS(x)(P(x)Q(x))xP(x)xQ(x)T

4d

P(x),Q(x) over ZS(x)(xP(x)xQ(x))x(P(x)Q(x))Proof:Let x(P(x)Q(x))FThen xP(x)F or xQ(x)FWhich is equivalent to (xP(x)xQ(x))FThen the case where (xP(x)xQ(x))T and x(P(x)Q(x))F is impossibleS(x)(xP(x)xQ(x))x(P(x)Q(x))T

5

P(x) over ZProve or disprove: S(P,a)P(a)aZ:P(a)P(a+1)Proof:Let SF:P(a):a:(P(a)P(a+1))F(P(a)T)(P(a+1)F)Let a=x(P(a)P(x)T)(P(a+1)P(x+1)F)Now let a=x+1(P(a)P(x+1)T)(P(x+1)F)P(x+1)TF - Contradiction!S(P,a)FS(P,a)T

6

Write an equivalent statement to the following without using negation:¬(xQ.yQ.((y2<2x>y)(ε>0.zQ.(z2<2z>xε))))xQ.¬(yQ.((y2<2x>y)(ε>0.zQ.(z2<2z>xε))))xQ.yQ.¬((y2<2x>y)(ε>0.zQ.(z2<2z>xε)))xQ.yQ.(¬(y2<2x>y)¬(ε>0.zQ.(z2<2z>xε)))xQ.yQ.((y2<2xy)(ε>0.¬(zQ.(z2<2z>xε))))xQ.yQ.((y2<2xy)(ε>0.zQ.¬(z2<2z>xε)))xQ.yQ.((y2<2xy)(ε>0.zQ.(2z2zxε)))
 In each of the following, find sets A, B, and C that satisfy the conditions of the clause:

7a

AB,BC,ACA={1},B={1,2},C={{1,2}}

7b

AB,AC,BCA={1},B={1,2},C={{1}}

7c

AB,BC,ACA={1},B={{1}},C={{{1}}}

7d

AB,BC,ACA={1},B={{1}},C={{1},{{1}}}

7e

AB,ABA={1},B={1,{1}}

8a

Prove or disprove: {2n1nN}{2n+1nN}Disproof:x=1{2n1nN}x=1{2n+1nN}{2n1nN}{2n+1nN}

8b

Prove or disprove: {2n1nN}{2n+1nN}Proof:Let x{2n+1nN}Then mN:x=2m+1Let n=m+1n is a sum of two natural numbers, therefore nNx=2m+1=2(n1)+1=2n1nN:x=2n1x{2n1nN}{2n+1nN}{2n1nN}{2n1nN}{2n+1nN}