Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Discrete-math 2
1
Which of the following is equivalent to the negation of the statement:
”For every chef, there exists a dish they make that is tasty."
C
=
{
chef
}
D
=
{
dish
}
M
(
c
,
d
)
=
c
makes
d
D
c
=
{
d
∣
d
∈
D
∧
M
(
c
,
d
)
}
T
(
d
)
=
d
is tasty
Statement is:
∀
c
∈
C
∃
d
∈
D
c
:
T
(
d
)
Negated statement is:
¬
(
∀
c
∈
C
∃
d
∈
D
c
:
T
(
d
)
)
≡
(h)
≡
≡
∃
c
∈
C
¬
(
∃
d
∈
D
c
:
T
(
d
)
)
≡
(b)
≡
≡
∃
c
∈
C
∀
d
i
n
D
c
¬
T
(
d
)
≡
(f)
Answer: Statements (h), (b), (f)
2
Which of the following is equivalent to the negation of the proposition:
∀
x
∃
y
∀
z
(
P
(
x
,
y
,
z
)
∧
P
(
z
,
x
,
y
)
)
¬
(
∀
x
∃
y
∀
z
(
P
(
x
,
y
,
z
)
∧
P
(
z
,
x
,
y
)
)
)
≡
≡
∃
x
¬
(
∃
y
∀
z
(
P
(
x
,
y
,
z
)
∧
P
(
z
,
x
,
y
)
)
)
≡
≡
∃
x
∀
y
¬
(
∀
z
(
P
(
x
,
y
,
z
)
∧
P
(
z
,
x
,
y
)
)
)
≡
(
d
)
≡
≡
∃
x
∀
y
∃
z
¬
(
P
(
x
,
y
,
z
)
∧
P
(
z
,
x
,
y
)
)
≡
≡
∃
x
∀
y
∃
z
(
¬
P
(
x
,
y
,
z
)
∨
¬
P
(
z
,
x
,
y
)
)
≡
(
a
)
Answer: Statements (d), (a)
3
Q
over
R
Find a predicate
Q
for which the statement
(
∀
x
∃
y
Q
(
x
,
y
)
∧
∀
y
∃
x
Q
(
x
,
y
)
)
→
∀
x
∃
y
(
Q
(
x
,
y
)
∧
Q
(
y
,
x
)
)
is false
Q
(
x
,
y
)
=
x
>
y
∀
x
∃
y
Q
(
x
,
y
)
≡
T
∀
x
∃
y
=
x
−
1
:
x
>
y
≡
T
∀
y
∃
x
Q
(
x
,
y
)
≡
T
∀
y
∃
x
=
y
+
1
:
x
>
y
≡
T
∀
x
∃
y
(
Q
(
x
,
y
)
∧
Q
(
y
,
x
)
)
≡
F
Q
(
x
,
y
)
∧
Q
(
y
,
x
)
≡
x
>
y
∧
y
>
x
≡
F
(
T
∧
T
)
→
F
≡
T
→
F
≡
F
Answer:
Q
(
x
,
y
)
=
x
>
y
4a
P
(
x
,
y
)
over
Z
Disproof:
S
(
x
,
y
)
≡
∃
x
∀
y
P
(
x
,
y
)
→
∀
x
∃
y
P
(
x
,
y
)
P
(
x
,
y
)
=
(
x
>
0
)
∧
(
y
>
y
−
1
)
∃
x
∀
y
P
(
x
,
y
)
≡
T
∀
x
∃
y
P
(
x
,
y
)
≡
F
⟹
S
(
x
,
y
)
≡
T
→
F
≡
F
4b
P
(
x
,
y
)
over
Z
Disproof:
S
(
x
,
y
)
≡
∀
x
∃
y
P
(
x
,
y
)
→
∃
x
∀
y
P
(
x
,
y
)
P
(
x
,
y
)
=
(
y
>
0
)
∧
(
x
>
x
−
1
)
∀
x
∃
y
P
(
x
,
y
)
≡
T
∃
x
∀
y
P
(
x
,
y
)
≡
F
⟹
S
(
x
,
y
)
≡
T
→
F
≡
F
4c
P
(
x
)
,
Q
(
x
)
over
Z
Proof:
S
(
x
)
≡
∀
x
(
P
(
x
)
∧
Q
(
x
)
)
→
(
∀
x
P
(
x
)
∧
∀
x
Q
(
x
)
)
Let
(
∀
x
P
(
x
)
∧
∀
x
Q
(
x
)
)
≡
F
Then
∀
x
P
(
x
)
≡
F
or
∀
x
Q
(
x
)
≡
F
Then
∀
x
(
P
(
x
)
∧
Q
(
x
)
)
≡
F
Then the case where
∀
x
(
P
(
x
)
∧
Q
(
x
)
)
≡
T
and
(
∀
x
P
(
x
)
∧
∀
x
Q
(
x
)
)
≡
F
is impossible
⟹
S
(
x
)
≡
∀
(
P
(
x
)
∧
Q
(
x
)
)
→
∀
x
P
(
x
)
∧
∀
x
Q
(
x
)
≡
T
4d
P
(
x
)
,
Q
(
x
)
over
Z
S
(
x
)
≡
(
∀
x
P
(
x
)
∧
∀
x
Q
(
x
)
)
→
∀
x
(
P
(
x
)
∧
Q
(
x
)
)
Proof:
Let
∀
x
(
P
(
x
)
∧
Q
(
x
)
)
≡
F
Then
∀
x
P
(
x
)
≡
F
or
∀
x
Q
(
x
)
≡
F
Which is equivalent to
(
∀
x
P
(
x
)
∧
∀
x
Q
(
x
)
)
≡
F
Then the case where
(
∀
x
P
(
x
)
∧
∀
x
Q
(
x
)
)
≡
T
and
∀
x
(
P
(
x
)
∧
Q
(
x
)
)
≡
F
is impossible
⟹
S
(
x
)
≡
(
∀
x
P
(
x
)
∧
∀
x
Q
(
x
)
)
→
∀
x
(
P
(
x
)
∧
Q
(
x
)
)
≡
T
5
P
(
x
)
over
Z
Prove or disprove:
S
(
P
,
a
)
≡
∀
P
(
a
)
∃
a
∈
Z
:
P
(
a
)
→
P
(
a
+
1
)
Proof:
Let
S
≡
F
:
∃
P
(
a
)
:
∀
a
:
(
P
(
a
)
→
P
(
a
+
1
)
)
≡
F
⟺
(
P
(
a
)
≡
T
)
∧
(
P
(
a
+
1
)
≡
F
)
Let
a
=
x
(
P
(
a
)
≡
P
(
x
)
≡
T
)
∧
(
P
(
a
+
1
)
≡
P
(
x
+
1
)
≡
F
)
Now let
a
=
x
+
1
(
P
(
a
)
≡
P
(
x
+
1
)
≡
T
)
∧
(
P
(
x
+
1
)
≡
F
)
⟹
P
(
x
+
1
)
≡
T
≡
F
- Contradiction!
⟹
S
(
P
,
a
)
≢
F
⟹
S
(
P
,
a
)
≡
T
6
Write an equivalent statement to the following without using negation:
¬
(
∃
x
∈
Q
.
∀
y
∈
Q
.
(
(
y
2
<
2
→
x
>
y
)
∧
(
∀
ε
>
0.
∃
z
∈
Q
.
(
z
2
<
2
∧
z
>
x
−
ε
)
)
)
)
≡
∀
x
∈
Q
.
¬
(
∀
y
∈
Q
.
(
(
y
2
<
2
→
x
>
y
)
∧
(
∀
ε
>
0.
∃
z
∈
Q
.
(
z
2
<
2
∧
z
>
x
−
ε
)
)
)
)
≡
∀
x
∈
Q
.
∃
y
∈
Q
.
¬
(
(
y
2
<
2
→
x
>
y
)
∧
(
∀
ε
>
0.
∃
z
∈
Q
.
(
z
2
<
2
∧
z
>
x
−
ε
)
)
)
≡
∀
x
∈
Q
.
∃
y
∈
Q
.
(
¬
(
y
2
<
2
→
x
>
y
)
∨
¬
(
∀
ε
>
0.
∃
z
∈
Q
.
(
z
2
<
2
∧
z
>
x
−
ε
)
)
)
≡
∀
x
∈
Q
.
∃
y
∈
Q
.
(
(
y
2
<
2
∧
x
≤
y
)
∨
(
∃
ε
>
0.
¬
(
∃
z
∈
Q
.
(
z
2
<
2
∧
z
>
x
−
ε
)
)
)
)
≡
∀
x
∈
Q
.
∃
y
∈
Q
.
(
(
y
2
<
2
∧
x
≤
y
)
∨
(
∃
ε
>
0.
∀
z
∈
Q
.
¬
(
z
2
<
2
∧
z
>
x
−
ε
)
)
)
≡
∀
x
∈
Q
.
∃
y
∈
Q
.
(
(
y
2
<
2
∧
x
≤
y
)
∨
(
∃
ε
>
0.
∀
z
∈
Q
.
(
2
≤
z
2
∨
z
≤
x
−
ε
)
)
)
In each of the following, find sets A, B, and C that satisfy the conditions of the clause:
7a
A
⊆
B
,
B
∈
C
,
A
∉
C
A
=
{
1
}
,
B
=
{
1
,
2
}
,
C
=
{
{
1
,
2
}
}
7b
A
⊆
B
,
A
∈
C
,
B
∉
C
A
=
{
1
}
,
B
=
{
1
,
2
}
,
C
=
{
{
1
}
}
7c
A
∈
B
,
B
∈
C
,
A
∉
C
A
=
{
1
}
,
B
=
{
{
1
}
}
,
C
=
{
{
{
1
}
}
}
7d
A
∈
B
,
B
∈
C
,
A
∈
C
A
=
{
1
}
,
B
=
{
{
1
}
}
,
C
=
{
{
1
}
,
{
{
1
}
}
}
7e
A
∈
B
,
A
⊆
B
A
=
{
1
}
,
B
=
{
1
,
{
1
}
}
8a
Prove or disprove:
{
2
n
−
1
∣
n
∈
N
}
⊆
{
2
n
+
1
∣
n
∈
N
}
Disproof:
x
=
1
∈
{
2
n
−
1
∣
n
∈
N
}
x
=
1
∉
{
2
n
+
1
∣
n
∈
N
}
⟹
{
2
n
−
1
∣
n
∈
N
}
⊈
{
2
n
+
1
∣
n
∈
N
}
8b
Prove or disprove:
{
2
n
−
1
∣
n
∈
N
}
⊇
{
2
n
+
1
∣
n
∈
N
}
Proof:
Let
x
∈
{
2
n
+
1
∣
n
∈
N
}
Then
∃
m
∈
N
:
x
=
2
m
+
1
Let
n
=
m
+
1
n
is a sum of two natural numbers, therefore
n
∈
N
x
=
2
m
+
1
=
2
(
n
−
1
)
+
1
=
2
n
−
1
∃
n
∈
N
:
x
=
2
n
−
1
⟹
x
∈
{
2
n
−
1
∣
n
∈
N
}
⟹
{
2
n
+
1
∣
n
∈
N
}
⊆
{
2
n
−
1
∣
n
∈
N
}
⟺
{
2
n
−
1
∣
n
∈
N
}
⊇
{
2
n
+
1
∣
n
∈
N
}