Discrete-math 3

Let A,B,C be sets. Prove or disprove the following statements:

1a

A(BC)=(AB)(AC)Disproof: Let A=C,BCCThen:A(BC)(AB)(AC)=(AB)=A(BC)(AB)(AC)An example of such sets: A={1,2},B={1},C={1,2}

1b

AB=AcBcProof: AcBc={xx(AcBc)x(BcAc)}=={x(xAcxBc)(xBcxAc)}=={xU(xAxB)(xBxA)}=={xUx(BA)x(AB)}={xx(BA)x(AB)}=ABAB=AcBc

1c

A((BAc)Bc)=Proof:A((BAc)Bc)=A((BBc)(AcBc))=A((AcBc))==A(AcBc)=(AAc)Bc=Bc=A((BAc)Bc)=

1d

BAAB=ABProof:BAx:xBxABA={x|xBxA}BA{x|xAxAF}=BABA=AB=(AB)(BA)=(AB)=ABAB=AB

1e

A(BC)=(AB)CDisproof:Let A,AB,B=CFor example: A={1,2},B={1},C={1}A(BC)=A=A(AB)C={2}{1}={2}A(BC)(AB)C

2a

Prove: For any sets X,Y:if XY=, then XY=XYProof:XY=(XY)(XY)=(XY)=XYXY=XY

2b

Prove: For any sets X,Y:if XY, then X(YX)=YProof:X(YX)={aaX(aYaX)}=={a(aXaY)(aXaX)T}={aaXaY}XYa:(aXaY){a(aXaY)}={aaYaY}=YY=YX(YX)=Y

2c

Prove: For any sets A,B:(AB)(AB)=Proof:(AB)(AB)=((AB)(AB))(AB)=={x(x(AB)x(AB))x(AB)}=={xx(AB)(x(AB)x(AB))}=={xx(AB)F}={xF}=(AB)(AB)=

2d

Prove: For any sets A,B:(AB)(AB)=ABProof:(AB)(AB)=((AB)(AB))((AB)(AB)), proved in 2c==(AB)(AB)=((AB)(AB))(AB)Let X=AB,Y=AB((AB)(AB))(AB)=(YX)XBy properties of inclusion: X=ABAB=YXY(YX)X=Proved in 2bY((AB)(AB))(AB)=AB(AB)(AB)=AB

3a

Prove: (iIAi)c=iIAicProof:(iIAi)c={xUxiIAi}={xU¬(iI:xAi)}=={xUiI:xAi}={xiI:xAic}=iIAic(iIAi)c=iIAic

3b

Prove: (iIAi)c=iIAicProof:(iIAi)c={xUxiIAi}={xU¬(iI:xAi)}=={xUiI:xAi}={xiI:xAic}=iIAic(iIAi)c=iIAic
For all nN, define:An={n1,n,n+1}

4a

N0 - according to Wikipedia, this denotion is a set of natural numbers and 0nNAn=N0Proof:1.nNAnN0Let xnNAnThen, nN:xAnnN:(x=n1)(x=n)(x=n+1)1.1x=n1,x is a difference between a natural number and 1, therefore it is either a natural number, or 01.2x=n,x is a natural number1.3x=n+1,x is a sum of two natural numbers,  therefore it is a natural number1.1,1.2 and 1.3xN0nNAnN02.N0nNAnLet xN02.1x=0, then n=1:xA1xnNAn 2.2xN, then n=x:xAnxnNAn2.1 and 2.2xnNAnN0nNAn1. and 2.nNAn=N0

4b

nNAn=Proof: is a subset of any setnNAnnNAnLet xnNAnThen nN:xAnLet n=1, then xA1={0,1,2}Now let n=4, then xA4={3,4,5}xA1xA4x(A1A4)xnNAn(nNAn)(nNAn)nNAn=

5a

Prove or disprove: P(A)P(B)P(AB)Proof:C:P(C)(P(A)P(B))C:P(C)P(AB)P(A)P(B)P(AB)

5b

Prove or disprove: P(A)P(B)=P(AB)Disproof:(P(A)P(B))P(AB)Example: A=,B=P(A)=P(B)={}P(A)P(B)=P(AB)=P()={}P(A)P(B)P(AB)

5c

Prove or disprove: AP(A)=Disproof:Example:A={}P(A)={,{}}AP(A)={}AP(A)

5d

Prove or disprove: P(A)P(P(A))Proof:C:P(C)P(A)P(P(A))P(A)P(P(A))P(A)P(P(A))

5e

Prove or disprove: ABP(A)P(B)Proof:1.Let ABDP(A)DADBDP(B)(DP(A)DP(B))P(A)P(B)2.Let P(A)P(B)xA{x}A{x}P(A){x}P(B){x}BxB(xAxB)AB1. and 2.ABP(A)P(B)

5f

Prove or disprove: P(A)P(B)={}AB=ABProof:1.Let AB=ABP(A)P(B)={XXAXB}AB=(AB)(AB)=ABAB=Let XA,XBxX:(xAxB)xX:xABxX:xX=P(A)P(B)={}2.Let P(A)P(B)={}Let X=ABXAXBXP(A)XP(B)X(P(A)P(B))X=AB=(AB)(AB)=(AB)X=(AB)=ABAB=AB1. and 2.P(A)P(B)={}AB=AB
{An}nNAn={kN2k3n2}Bn=An+1An

6a

An+1={kN2k3n+1}=An{3n1,3n,3n+1nN}Bn={3n1,3n,3n+1nN}nNBn=N{1}Proof:1.nNBn(N{1})Let xnNBnThen, nN:xBnnN:(x=3n1)(x=3n)(x=3n+1)1.1x=3n1,x is a difference between a natural numberbigger than 2, and 1, therefore it is a natural number bigger than 11.2x=3n,x is a natural number bigger than 11.3x=3n+1,x is a sum of two natural numbers,  therefore it is a natural number bigger than 11.1,1.2 and 1.3x(N{1})nNBn(N{1})2.(N{1})nNBnLet xN{1}2.1If x0mod3, then nN:x=3n xBnxnNBn2.2If x1mod3, then nN:x=3n+1  xBnxnNBn2.3If x2mod3, then nN:x=3n+2=3(n+1)1xBn+1xnNBn2.1,2.2 and 2.3xnNBn(N{1})nNBn1. and 2.nNBn=N{1}

6b

Let Dn=NBnnNDn={1}Proof:Let domain of the complement be NThen Dnc=(NBn)c=BnGiven that nNBn=N{1}As proved in 3a:nNBn=nNDnc=(nNDn)c(nNDn)c=N{1}((nNDn)c)c=(N{1})c={1}nNDn={1}