Discrete-math 4

1

Given: a1R,dN,n2:an=an1+dProve: k=1nak=n(a1+an)2Proof:Base case. Let n=1k=1nak=a1=1(a1+an)2Induction step. Let k=1nak=n(a1+an)2an=a1+(n1)dan+1=a1+ndk=1n+1ak=k=1nak+an+1=n(a1+an)2+an+1==n(a1+an)+2an+12=na1+nan+1nd+an+1+a1+nd2=(n+1)(a1+an+1)2nN:k=1nak=n(a1+an)2k=1n+1ak=(n+1)(a+an+1)2Base case + induction stepProved by induction
Given: P0=AnN:Pn=¬Pn1A

2a

Prove: For all odd n,Pn is a tautologyProof:Base case. Let n=1P1=¬P0A=¬AATInduction step. Let Pn be a tautologyPn+2=¬Pn+1A=¬(¬PnA)A=(PnT¬A)A=¬AATPn is a tautologyPn+2 is a tautologyBy Induction odd n:PnT

2b

Prove: For all even n,Pn=AProof:Base case. Let n=0P0=AInduction step. Let Pn=APn+2=¬Pn+1A=¬(¬PnA)A=(Pn¬A)A=(A¬A)AAPn=APn+2=ABy Induction even n:Pn=A

3

Prove: It is possible to cover a 2n×2n grid with one cell missing,with L-shaped tiles consisting of three connected cells for all natural nProof:Base case. Let n=12×2 grid can be filled like this:(1011)0 represents the missing cell, other numbers represent the index of a tile usedLet us define four ways to fill this grid:A1RU=(1011),A1LU=(0111),A1LL=(1101),A1RL=(1110)Where first R/L is right or left, second U/L is upper or lower and index is the value of nInduction step.Now let us see if we can fill the grid for n+1, given that we can do it for nAn+1=2n+1×2n+1 can be represented as 22n×2n2=42n×2n four An gridsLet us compose An+1 the following way:An+1=(AnRLAnLLAnRUAnLU)=(0000)We can see that the center has four empty cells,which is logical as each An grid has one empty cell and there are four such gridsThis empty center can be filled with one L-shaped tile:(xxx0)Now let us prove that for any n it is possible to fill the grid as AnLU,AnLL,AnRU,AnRLAn=(0xxx)=(An1RL)Turn An1RL by 180 degress(An1LU)=AnLUAn=(xxx0)=(An1LU)Turn An1LU by 180 degrees(An1RL)=AnRLAn=(xx0x)=(An1RU)Transpose An1RU(An1LL)=AnLLAn=(x0xx)=(An1LL)Transpose An1LL(An1RU)=AnRUBase case + Induction stepProved for all n by induction

4

Let a0R:a+1aZProve: nN:an+1anZProof:b1=a+1a=a2+1aZLet bn=an+1an=a2n+1anbn+1=a2n+2+1an+1Base case. Let n=1b1=a+1ab1ZLet n=2b2=a2+1a2=a4+1a2=(a2+1)22a2a2=(a2+1a)22a2+1aZ(a2+1a)2Z(a2+1a)22=b2ZStrong induction step. Let k[1,n]:bkZb1bn=(a2+1)(a2n+1)aan=a2(n+1)+1+a2n+a2an+1==a2(n+1)+1an+1bn+1+a2(n1)+1an1bn1=bn+1+bn1bn+1=b1bnbn1b1,bn1,bnZb1bnZb1bnbn1=bn+1ZBase step + Strong induction stepProved by strong induction for all nN

5

R={(1,1),(1,2),(1,3),(2,1),(3,1),(2,2)}A={1,2},B={1,2,3}Show: R=A×B or RA×BSolution:(2,3)A×B,(2,3)RRA×BAnother reason being:(3,1)A×B,(3,1)R
A is a setA1,A2,,An:i[1,n]:AiARA×A,R={(x,y)A×A|i:xAiyAi}

6a

Prove or disprove: i[1,n]Ai=AR is reflexiveProof:Let xAxAxi[1,n]Aii[1,n]:xAii[1,n]:xAixAi(x,x)RR is reflexive

6b

Prove or disprove: R is reflexivei[1,n]Ai=AProof:R is reflexivexA:(x,x)RxA:i[1,n]:xAiLet xAxAR is reflexivei[1,n]:xAixi[1,n]Ai1.Ai[1,n]AiLet xi[1,n]Aixi[1,n]Aii[1,n]:xAiAiAi[1,n]:xA2.i[1,n]AiA1. and 2.A=i[1,n]Ai

6c

Prove or disprove: (ij:AiAj=)R is transitiveProof:Let a,b,cA,(a,b)R,(b,c)R(a,b)Ri[1,n]:aAibAi(b,c)Rj[1,n]:bAjcAjLet ijThen bAibAjAiAjContradiction!i=ji[1,n]:aAibAicAi(a,c)RR is transitive

6d

Prove or disprove: R is transitiveij:AiAj=Disproof:Counter-example:A={1,2,3,4}A1=A,A2=AR is transitive on ABut A1A2Disproved

7a

Given: R,S equivalence relations on AProve or disprove: RS is an equivalence relation on AProof:R is an equivalence relation on AR is reflexive, symmetric and transitiveS is an equivalence relation on AS is reflexive, symmetric and transitiveaA:(a,a)R(a,a)SaA:(a,a)(RS)a,bA:((a,b)R(b,a)R)((a,b)S(b,a)S)(1)(a,b)(RS)(a,b)R(a,b)S(1)(b,a)R(b,a)S(b,a)(RS)a,b,cA:((a,b)R(b,c)R)(a,c)R(2)a,b,cA:((a,b)S(b,c)S)(a,c)S(3)(a,b),(b,c)(RS)(a,b),(b,c)R(a,b),(b,c)S(2),(3)(a,c)R(a,c)S(a,c)(RS)(RS) is reflexive, symmetric and transitive(RS) is an equivalence relation

7b

Given: R,S equivalence relations on AProve or disprove:RS is an equivalence relation on ADisproof:Let (a,b)(RS),(b,c)(RS)Then this is possible: (a,b)R,(b,c)R,(b,c)SFor example:A={1,2,3,4}R={(1,1),(2,2),(3,3),(4,4),(1,2),(2,1)}S={(1,1),(2,2),(3,3),(4,4),(2,3),(3,2)}RS={(1,1),(2,2),(3,3),(4,4),(1,2),(2,1),(2,3),(3,2)}(1,2)RS,(2,3)RSBut (1,3)RS(RS) is not transitive(RS) is not an equivalence relation

8

S is a relation on (R{0})×(R{0})S={((x1,y1),(x2,y2))|x1x2>0y1y2>0}Prove that S is an equivalence relation on (R{0})×(R{0})Proof:Let (a,b)(R{0})aa>0bb>0((a,b),(a,b))SS is reflexiveLet ((a,b),(c,d))SThen ac>0bd>0((c,d),(a,b))Sca>0ac>0db>0bd>0S is symmetricLet ((a,b),(c,d)),((c,d),(e,f))SThen ac>0,bd>0,ce>0,df>0acce>0aec2>0ae>0bddf>0bfd2>0bf>0ae>0bf>0((a,b),(e,f))SS is transitiveS is reflexive, symmetric and transitiveS is an equivalence relation