Discrete-math 5

1

Let A be a set. BARP(A)×P(A)(C,D)RCB=DB

1a

Prove: R is an equivalence relationProof:CP(A):CB=CB(C,C)RR is reflexiveLet (C,D)RCB=DBDB=CB(D,C)RR is symmetricLet (C,D)R,(D,E)RCB=DBDB=EBCB=EB(C,E)RR is transitiveR is reflexive, symmetric and transitiveR is an equivalence relation

1b

Prove: C,DB:CD[C]R[D]RProof:CBCB=CDBDB=DCDCBDB(C,D)RD[D]RD[C]R[D]R[C]R

1c

Prove: CA:DB:[C]R=[D]RProof:[C]R={X|XB=CB}[D]R={X|XB=DB=D}[C]R=[D]RCB=DBy properties of inclusion: CBBCA:DB:D=CB[C]R=[D]R

1d

A={1,2,3,4},B={1,4}[]R={XP(A)|XB=B=}XB=1X4X[]R={,{2},{3},{2,3}}[X]R={YP(A)|XB=YB}What equivalence classes are there? Let us take all possible values of XB, they are all possible subsets of B:{1,4}{1}{1,4}{4}{1,4}{1,4}{1,4}P(A)/R={[X]R|XP(A)}={[]R,[{1}]R,[{4}]R,[{1,4}]R}

2

A={1,2,3,4}R1=IAA/R1={{1},{2},{3},{4}}R2=IA{(1,2),(2,1)}A/R2={{1,2},{3},{4}}R3=IA{(1,2),(2,1),(2,3),(3,2),(1,3),(3,1)}A/R3={{1,2,3},{4}}

3a

R on R×R(x1,y1)R(x2,y2)x12+y12=x22+y22[(1,1)]R={(x,y)|x2+y2=2}(12,72)R(1,1)14+74=1+1(12,72)[(1,1)]REquation of a circle: (xa)2+(yb)2=r2The geometric interpretation of the partition would beall different circles with the center at (0,0)

3b

S on R×R(x1,y1)S(x2,y2)x1=x2[(1,1)]S={(x,y)|x=1}(1,1)S(1,1)1=1(1,1)[(1,1)]SEquation of a vertical line: x=aThe geometric interpretation of the partition would beall different vertical lines

3c

[(x,y)]RS={(a,b)|a2+b2=x2+y2a=x}={(a,b)|b2=y2a=x}=={(a,b)|b=±ya=x}[(x,y)]RS={{(x,y)}y=0{(x,y),(x,y)}y0|[(x,y)]RS|={1y=02y0Geometrically this can be explained as:A vertical line can either touch the circle in one point or cross it in two points

4

S on A=(R{0})×(R{0})(x1,y1)S(x2,y2)x1x2>0y1y2>0x1x2>0{x1<0x2<0x1>0x2>0y1y2>0{y1<0y2<0y1>0y2>0(x1,y1)S(x2,y2){x1,x2,y1,y2<0x1,x2<0y1,y2>0x1,x2,y1,y2>0x1,x2>0y1,y2<0A/S={[(1,1)]S,[(1,1)]S,[(1,1)]S,[(1,1)]S}|A/S|=4Geometrical interpretation of S are quadrants, not including the axes
Let A={1,2,3}

5a

Nor symmetric, nor anti-symmetricR={(1,2),(2,1),(3,1)}

5b

Anti-symmetric, but not symmetricR={(1,2)}

5c

Symmetric, but not anti-symmetricR={(1,2),(2,1)}

5d

Symmetric and anti-symmetricR=IA

6a

RR×RR={(a,b)|a2b2}R is reflexive: a2a2(a,a)RR is not anti-symmetric: a2b2b2a2a2=b2a=bExample: (a,a)R,(a,a)R,aaR is not a partially ordering relation

6b

(A,R) is a partially ordered set (poset)Let BA,S=R(B×B)Let aB(a,a)B×B(a,a)R(a,a)SS is reflexive on BLet a,bB(a,b),(b,a)B×B(a,b)S(a,b)R[(b,a)Rb=a][(b,a)Sb=a]S is anti-symmetric on BLet a,b,cB(a,b),(b,c),(a,c)B×B(a,b),(b,c)S(a,b),(b,c)R(a,c)R(a,c)SS is transitive on BS is a partially ordering relation on B

6c

A={(a1,a2,,an)|k[1,n]:ak{0,1}}R={((a1,a2,,an),(b1,b2,,bn))|k=1nak<k=1nbk}Note: I will use notation 00,010,1011,etc.to denote sequences (0,0),(0,1,0),(1,0,1,1),etc.so that the solution is not too flooded with extra characterse.g. 10 in this case is not a number, but a sequence of length 2Let n=1A={(0),(1)},R={((0),(1))}Let n=2A={00,01,10,11}R={(00,01),(00,10),(00,11),(01,11),(10,11)}R is a relation comparing the number of 1s in two sequencesR is not a partial ordering relation, because any sequence is not in relation R with itselfLet S=RIAIASS is reflexive(a,b)S(b,a)S is always falseS is anti-symmetricaSb,bSca<b<ca<caScS is transitiveS is a partially ordering relationSequence 0A=(0,0,,0)n is a minimum of set A:xA:(0A,x)S as all x will have at least one 1 or be equal to 0ASet A has a minimumthe only minimal element is 0ASequence 1A=(1,1,,1)n is a maximum of set A:xA:(x,1A)S as all x will have at least one 0 or be equal to 1ASet A has a maximumthe only maximal element is 1A

7

A={2,3,,99,100}R={(a,b)|kN:b=ak}

7a

How many maximal elements are there in this set?Element is going to be maximal if it doesn’t divide any member of set A except for itselfxA:x5042x1002xAx2xAny element less or equal to 50 is not maximalxA:x>50,k2xk>100{xk=xk=1xkAk2x>50A:¬(bA:bxxb)All elements of A greater than 50 are maximal, there are 50 of them

7b

Is there a smallest element?232 is not the smallestx[3,100]:x2aAxA:axThere is no smallest element

7c

Add two elements to the set such that it has a smallest and a largest elementsFirst element to add would be 1, as it divides all elements of set A1 is a minimumSecond element to add would be k=2100k, as it is divided by all elements of set Ak=2100k is a maximum

8

A is a finite set,(A,R) is a partially ordered setProve: If there is exactly one minimal element, then it is also a minimumProof: Let m be a unique minimal element, but not a minimum of set AxA:mxmSmxmxmLet B={bA|bSx}xBBBAB is finitezB:z is a minimal element of B[mSbbSxmSx]bB:mbmzmzm is a unique minimal of Az is not minimal in AaA:azaSzaSzzSxBy transitivityaSxaBaBaSza=zContradiction!m is a minimum of A