Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Discrete-math 7
1a
If invertible, find the inverse of
f
:
Z
→
N
0
,
f
(
n
)
=
|
n
|
Solution:
Let
n
∈
N
0
N
0
⊆
Z
⟹
n
∈
Z
⟹
∃
(
−
n
)
∈
Z
:
f
(
−
n
)
=
|
−
n
|
=
n
⟹
f
is surjective
f
(
1
)
=
f
(
−
1
)
⟹
f
is not injective
⟹
f
is not bijective
⟹
f
is not invertible
1b
If invertible, find the inverse of
f
:
R
→
R
+
,
f
(
x
)
=
10
2
−
x
Solution:
Let
f
−
1
:
R
+
→
R
,
f
−
1
(
x
)
=
2
−
log
(
x
)
Let
x
∈
R
:
(
f
−
1
∘
f
)
(
x
)
=
f
−
1
(
f
(
x
)
)
=
2
−
log
(
10
2
−
x
)
=
2
−
(
2
−
x
)
=
x
⟹
(
f
−
1
∘
f
)
=
I
d
R
(
1
)
Let
x
∈
R
+
:
(
f
∘
f
−
1
)
(
x
)
=
f
(
f
−
1
(
x
)
)
=
10
2
−
(
2
−
log
(
x
)
)
=
10
log
(
x
)
=
x
⟹
(
f
∘
f
−
1
)
=
I
d
R
+
(
2
)
(
1
)
∧
(
2
)
⟹
f
−
1
:
R
+
→
R
,
f
−
1
(
x
)
=
2
−
log
(
x
)
is an inverse of
f
2
Let
A
=
R
∖
{
1
}
2a
f
:
A
→
R
,
f
(
x
)
=
x
+
1
x
−
1
Is
f
injective? Is it surjective?
Solution:
Let
x
1
,
x
2
∈
A
f
(
x
1
)
=
f
(
x
2
)
⟹
x
1
+
1
x
1
−
1
=
x
2
+
1
x
2
−
1
⟹
(
x
1
+
1
)
(
x
2
−
1
)
=
(
x
2
+
1
)
(
x
1
−
1
)
⟹
x
1
x
2
+
x
2
−
x
1
−
1
=
x
1
x
2
+
x
1
−
x
2
−
1
⟹
2
x
2
=
2
x
1
⟹
x
1
=
x
2
⟹
f
is injective
∀
x
∈
R
:
x
+
1
≠
x
−
1
⟹
f
(
x
)
=
x
+
1
x
−
1
≠
1
∈
R
⟹
f
is not surjective
2b
f
:
A
→
A
,
f
(
x
)
=
x
+
1
x
−
1
Prove that
f
is invertible and find an inverse
Proof:
Let
y
∈
A
:
f
(
x
)
=
y
f
(
x
)
=
x
+
1
x
−
1
⟹
y
=
x
+
1
x
−
1
⟹
y
x
−
y
=
x
+
1
⟹
x
=
y
+
1
y
−
1
Let
f
−
1
:
A
→
A
,
f
−
1
(
x
)
=
x
+
1
x
−
1
(
f
−
1
∘
f
)
(
x
)
=
x
+
1
x
−
1
+
1
x
+
1
x
−
1
−
1
=
x
+
1
+
x
−
1
x
−
1
x
+
1
−
x
+
1
x
−
1
=
2
x
2
=
x
⟹
(
f
−
1
∘
f
)
=
I
d
A
(
1
)
(
f
∘
f
−
1
)
(
x
)
=
x
+
1
x
−
1
+
1
x
+
1
x
−
1
−
1
=
x
+
1
+
x
−
1
x
−
1
x
+
1
−
x
+
1
x
−
1
=
2
x
2
=
x
⟹
(
f
∘
f
−
1
)
=
I
d
A
(
2
)
(
1
)
∧
(
2
)
⟹
f
−
1
=
f
3
Let
f
:
A
→
A
Let
f
n
=
(
f
∘
f
∘
⋯
∘
f
)
⏟
n
times
where
n
∈
N
Let
f
0
=
I
d
A
3a
Prove:
[
∃
n
∈
N
:
∀
x
∈
A
:
f
n
(
x
)
=
x
]
⟹
f
is invertible
Proof:
∃
n
∈
N
:
∀
x
∈
A
:
f
n
=
(
f
n
−
1
∘
f
)
=
(
f
∘
f
n
−
1
)
=
I
d
A
⟹
f
n
−
1
=
f
−
1
⟹
f
is invertible
3b
Prove:
∀
x
∈
A
:
∃
n
∈
N
:
f
n
(
x
)
=
x
⟹
f
is invertible
Proof:
Let
x
1
,
x
2
∈
A
,
f
(
x
1
)
=
f
(
x
2
)
∃
n
,
m
∈
N
:
f
n
(
x
1
)
=
x
1
,
f
m
(
x
2
)
=
x
2
f
(
x
1
)
=
f
(
x
2
)
⟹
f
n
⋅
m
−
1
(
f
(
x
1
)
)
=
f
n
⋅
m
−
1
(
f
(
x
2
)
)
f
n
⋅
m
−
1
(
f
(
x
1
)
)
=
f
n
⋅
m
(
x
1
)
=
(
f
n
∘
f
n
∘
⋯
∘
f
n
⏟
m
times
)
(
x
1
)
=
x
1
f
n
⋅
m
−
1
(
f
(
x
2
)
)
=
f
n
⋅
m
(
x
2
)
=
(
f
m
∘
f
m
∘
⋯
∘
f
m
⏟
n
times
)
(
x
2
)
=
x
2
⟹
x
1
=
x
2
⟹
f
is injective
Let
y
∈
A
∃
n
∈
N
:
f
n
(
y
)
=
y
f
n
(
y
)
=
f
(
f
n
−
1
(
y
)
)
=
y
⟹
∀
y
∈
A
:
∃
x
=
f
n
−
1
(
y
)
:
f
(
x
)
=
y
⟹
f
is surjective
⟹
f
is bijective
⟹
f
is invertible
4
Let
g
:
N
→
N
Let
F
:
N
N
→
N
N
,
F
(
f
)
=
(
g
∘
f
)
Prove:
F
is injective
⟺
g
is injective
Proof:
Let
g
be injective
Let
f
1
,
f
2
∈
N
N
F
(
f
1
)
=
F
(
f
2
)
⟹
(
g
∘
f
1
)
=
(
g
∘
f
2
)
⟹
∀
n
∈
N
:
g
(
f
1
(
n
)
)
=
g
(
f
2
(
n
)
)
g
is injective
⟹
∀
n
∈
N
:
f
1
(
n
)
=
f
2
(
n
)
⟹
f
1
=
f
2
⟹
F
is injective
⟹
g
is injective
⟹
F
is injective
(
1
)
Let
F
be injective
Let
x
1
,
x
2
∈
N
:
g
(
x
1
)
=
g
(
x
2
)
Let
f
1
,
f
2
∈
N
N
:
f
1
(
n
)
=
x
1
,
f
2
(
n
)
=
x
2
Let
n
∈
N
F
(
f
1
)
(
n
)
=
(
g
∘
f
1
)
(
n
)
=
g
(
f
1
(
n
)
)
=
g
(
x
1
)
F
(
f
2
)
(
n
)
=
(
g
∘
f
2
)
(
n
)
=
g
(
f
2
(
n
)
)
=
g
(
x
2
)
g
(
x
1
)
=
g
(
x
2
)
⟹
∀
n
∈
N
:
F
(
f
1
)
(
n
)
=
F
(
f
2
)
(
n
)
F
(
f
1
)
=
F
(
f
2
)
⟹
F
is injective
f
1
=
f
2
⟹
∀
n
∈
N
:
f
1
(
n
)
=
f
2
(
n
)
⟹
x
1
=
x
2
⟹
g
is injective
⟹
F
is injective
⟹
g
is injective
(
2
)
(
1
)
∧
(
2
)
⟹
F
is injective
⟺
g
is injective
5
∽
on
N
N
f
∽
g
⟺
∃
k
∈
N
:
∀
n
>
k
:
f
(
n
)
=
g
(
n
)
5a
Prove:
∽
is an equivalence relation
Proof:
Let
f
∈
N
N
∀
n
>
1
∈
N
:
f
(
n
)
=
f
(
n
)
⟹
f
∽
f
⟹
∽
is reflexive
Let
f
,
g
∈
N
N
f
∽
g
⟹
∃
k
∈
N
:
∀
n
>
k
:
f
(
n
)
=
g
(
n
)
⟹
∃
k
∈
N
:
∀
n
>
k
:
g
(
n
)
=
f
(
n
)
⟹
g
∽
f
⟹
∽
is symmetric
Let
f
,
g
,
h
∈
N
N
,
f
∽
g
,
g
∽
h
f
∽
g
⟹
∃
k
1
∈
N
:
∀
n
>
k
1
:
f
(
n
)
=
g
(
n
)
g
∽
h
⟹
∃
k
2
∈
N
:
∀
n
>
k
2
:
g
(
n
)
=
h
(
n
)
⟹
∃
k
=
m
a
x
(
k
1
,
k
2
)
:
∀
n
>
k
:
f
(
n
)
=
g
(
n
)
=
h
(
n
)
⟹
f
∽
h
⟹
∽
is transitive
∽
is reflexive, symmetric and transitive
⟹
∽
is an equivalence relation
5b
Find
g
∈
N
N
such that
∀
f
∈
[
g
]
∽
:
f
is not surjective
Solution:
Let
g
:
N
→
N
,
g
(
n
)
=
1
f
∽
g
⟹
∃
k
∈
N
:
∀
n
>
k
:
f
(
n
)
=
g
(
n
)
=
1
Let
K
=
[
k
+
1
]
f
(
k
+
1
)
=
1
⟹
f
[
K
]
=
f
[
[
k
∥
k
]
]
∪
{
1
}
∀
n
>
k
:
f
(
n
)
=
1
⟹
I
m
(
f
)
=
f
[
[
k
∥
k
]
]
∪
{
1
}
=
f
[
K
]
f
[
K
]
is a finite set
,
f
[
K
]
⊆
N
⟹
f
[
K
]
⊂
N
⟹
I
m
(
f
)
⊂
N
⟹
f
is not surjective
6
Let
A
=
R
R
R
,
S
,
T
are relations on
A
6a
f
R
g
⟺
(
f
∘
g
)
=
(
g
∘
f
)
Determine and prove whether
R
is an equivalence relation
Disproof:
Let
f
,
g
,
h
∈
A
Let
f
(
x
)
=
x
+
1
Let
g
=
I
d
R
Let
h
(
x
)
=
x
3
(
g
∘
f
)
=
(
f
∘
g
)
=
f
⟹
f
R
g
(
h
∘
g
)
=
(
g
∘
h
)
=
h
⟹
g
R
h
Let
x
=
1
(
h
∘
f
)
(
x
)
=
(
x
+
1
)
3
=
8
,
(
f
∘
h
)
(
x
)
=
x
3
+
1
=
2
⟹
(
h
∘
f
)
≠
(
f
∘
h
)
⟹
f
R̸
h
⟹
R
is not transitive
⟹
R
is not an equivalence relation
6b
f
S
g
⟺
∀
y
∈
R
:
∃
x
∈
R
:
(
x
>
y
)
∧
(
f
(
x
)
=
g
(
x
)
)
Determine and prove whether
S
is an equivalence relation
Disproof:
Let
f
(
x
)
=
sin
(
x
)
Let
g
(
x
)
=
0
Let
h
(
x
)
=
sin
(
x
)
−
1
∀
y
∈
R
:
∃
x
∈
R
:
x
>
y
∧
sin
(
x
)
=
0
⟹
f
S
g
∀
y
∈
R
:
∃
x
∈
R
:
x
>
y
∧
0
=
sin
(
x
)
−
1
⟹
g
S
h
∀
x
∈
R
:
sin
(
x
)
≠
sin
(
x
)
−
1
⟹
f
S̸
h
⟹
S
is not transitive
⟹
S
is not an equivalence relation
6c
f
T
g
⟺
∃
y
∈
R
:
∀
x
∈
R
:
(
x
>
y
)
→
(
f
(
x
)
=
g
(
x
)
)
Determine and prove whether
T
is an equivalence relation
Proof:
Let
f
∈
A
∀
f
∈
A
:
∀
x
>
0
∈
R
:
f
(
x
)
=
f
(
x
)
⟹
f
T
f
⟹
T
is reflexive
Let
f
,
g
∈
A
:
f
T
g
f
T
g
⟹
∃
y
∈
R
:
∀
x
∈
R
:
(
x
>
y
)
→
(
f
(
x
)
=
g
(
x
)
)
⟹
∃
y
∈
R
:
∀
x
∈
R
:
(
x
>
y
)
→
(
g
(
x
)
=
f
(
x
)
)
⟹
g
T
f
⟹
T
is symmetric
Let
f
,
g
,
h
∈
A
:
f
T
g
,
g
T
h
f
T
g
⟹
∃
y
1
∈
R
:
∀
x
∈
R
:
(
x
>
y
1
)
→
(
f
(
x
)
=
g
(
x
)
)
g
T
h
⟹
∃
y
2
∈
R
:
∀
x
∈
R
:
(
x
>
y
2
)
→
(
g
(
x
)
=
h
(
x
)
)
⟹
∃
y
=
m
a
x
(
y
1
,
y
2
)
:
∀
x
∈
R
:
[
(
x
>
y
)
≡
(
x
>
y
1
∧
x
>
y
2
)
]
→
(
f
(
x
)
=
g
(
x
)
=
h
(
x
)
)
⟹
f
T
h
⟹
T
is transitive
T
is reflexive, symmetric and transitive
⟹
T
is an equivalence relation
7
Let
f
:
A
→
B
7a
Prove or disprove:
∀
X
⊆
A
:
f
[
X
c
]
⊆
(
f
[
X
]
)
c
Disproof:
Let
A
=
B
=
{
1
,
2
,
3
,
4
}
,
X
=
{
1
,
2
}
,
f
(
x
)
=
1
f
[
X
c
]
=
f
[
{
3
,
4
}
]
=
{
1
}
f
[
X
]
=
{
1
}
⟹
(
f
[
X
]
)
c
=
{
2
,
3
,
4
}
⟹
f
[
X
c
]
⊈
(
f
[
X
]
)
c
7b
Prove or disprove:
∀
X
,
Y
⊆
A
:
f
[
X
△
Y
]
=
f
[
X
]
△
f
[
Y
]
⟺
f
is injective
Proof:
Let
∀
X
,
Y
⊆
A
:
f
[
X
△
Y
]
=
f
[
X
]
△
f
[
Y
]
Let
a
1
,
a
2
∈
A
:
f
(
a
1
)
=
f
(
a
2
)
Let
X
=
{
a
1
}
,
Y
=
{
a
2
}
f
[
X
△
Y
]
=
f
[
X
]
△
f
[
Y
]
f
[
X
]
△
f
[
Y
]
=
f
[
{
a
1
}
]
△
f
[
{
a
2
}
]
=
{
f
(
a
1
)
}
△
{
f
(
a
2
)
}
=
∅
⟹
f
[
X
△
Y
]
=
∅
⟹
X
△
Y
=
∅
⟹
a
1
=
a
2
⟹
f
is injective
⟹
∀
X
,
Y
⊆
A
:
f
[
X
△
Y
]
=
f
[
X
]
△
f
[
Y
]
⟹
f
is injective
(
1
)
Let
f
be injective
Let
X
,
Y
⊆
A
Let
y
∈
f
[
X
△
Y
]
⟹
∃
x
∈
X
△
Y
:
f
(
x
)
=
y
⟹
x
∈
(
X
∖
Y
)
∪
(
Y
∖
X
)
Let
x
∈
X
∖
Y
x
∈
X
⟹
y
=
f
(
x
)
∈
f
[
X
]
Let
y
∈
f
[
Y
]
⟹
∃
x
1
∈
Y
:
f
(
x
1
)
=
y
f
(
x
1
)
=
y
=
f
(
x
)
⟹
f
is injective
x
1
=
x
∉
Y
−
Contradiction!
⟹
x
∉
Y
⟹
f
is injective
y
=
f
(
x
)
∉
f
[
Y
]
⟹
y
∈
f
[
X
]
∧
y
∉
f
[
Y
]
⟹
y
∈
f
[
X
]
△
f
[
Y
]
[
1
]
Let
x
∈
Y
∖
X
x
∈
Y
⟹
y
=
f
(
x
)
∈
f
[
Y
]
Let
y
∈
f
[
X
]
⟹
∃
x
1
∈
X
:
f
(
x
1
)
=
y
f
(
x
1
)
=
y
=
f
(
x
)
⟹
f
is injective
x
1
=
x
∉
X
−
Contradiction!
⟹
x
∉
X
⟹
f
is injective
y
=
f
(
x
)
∉
f
[
X
]
⟹
y
∈
f
[
Y
]
∧
y
∉
f
[
X
]
⟹
y
∈
f
[
X
]
△
f
[
Y
]
[
2
]
[
1
]
∧
[
2
]
⟹
f
[
X
△
Y
]
⊆
f
[
X
]
△
f
[
Y
]
(
2
)
Let
y
∈
f
[
X
]
△
f
[
Y
]
⟹
y
∈
(
f
[
X
]
∖
f
[
Y
]
)
∪
(
f
[
Y
]
∖
f
[
X
]
)
Let
y
∈
f
[
X
]
∖
f
[
Y
]
y
∈
f
[
X
]
⟹
∃
x
∈
X
:
f
(
x
)
=
y
y
∉
f
[
Y
]
⟹
∀
x
∈
Y
:
f
(
x
)
≠
y
⟹
[
f
(
x
)
=
y
→
x
∉
Y
]
⟹
∃
x
∈
X
∖
Y
:
f
(
x
)
=
y
⟹
y
∈
f
[
X
△
Y
]
[
3
]
Let
y
∈
f
[
Y
]
∖
f
[
X
]
y
∈
f
[
Y
]
⟹
∃
x
∈
Y
:
f
(
x
)
=
y
y
∉
f
[
X
]
⟹
∀
x
∈
X
:
f
(
x
)
≠
y
⟹
[
f
(
x
)
=
y
→
x
∉
X
]
⟹
∃
x
∈
Y
∖
X
:
f
(
x
)
=
y
⟹
y
∈
f
[
X
△
Y
]
[
4
]
[
3
]
∧
[
4
]
⟹
f
[
X
]
△
f
[
Y
]
⊆
f
[
X
△
Y
]
(
3
)
(
2
)
∧
(
3
)
⟹
∀
X
,
Y
⊆
A
:
f
[
X
△
Y
]
=
f
[
X
]
△
f
[
Y
]
⟸
f
is injective
(
4
)
(
1
)
∧
(
4
)
⟹
∀
X
,
Y
⊆
A
:
f
[
X
△
Y
]
=
f
[
X
]
△
f
[
Y
]
⟺
f
is injective
7c
Prove or disprove:
∀
X
⊆
A
:
X
⊆
f
−
1
[
f
[
X
]
]
Proof:
Let
X
⊆
A
Let
x
∈
X
x
∈
X
⟹
f
(
x
)
∈
f
[
X
]
⟹
x
∈
f
−
1
[
f
[
X
]
]
⟹
X
⊆
f
−
1
[
f
[
X
]
]
7d
Prove or disprove:
∀
X
⊆
A
:
X
=
f
−
1
[
f
[
X
]
]
⟺
f
is injective
Proof:
Let
f
is injective
Let
a
∈
f
−
1
[
f
[
X
]
]
a
∈
f
−
1
[
f
[
X
]
]
⟹
f
(
a
)
∈
f
[
X
]
Let
a
1
∈
A
:
f
(
a
1
)
=
f
(
a
)
f
(
a
1
)
=
f
(
a
)
∈
f
[
X
]
⟹
a
1
∈
X
f
is injective:
f
(
a
1
)
=
f
(
a
)
⟹
a
1
=
a
⟹
a
∈
X
⟹
f
−
1
[
f
[
X
]
]
⊆
X
∀
X
⊆
A
:
X
⊆
f
−
1
[
f
[
X
]
]
∧
f
−
1
[
f
[
X
]
]
⊆
X
⟹
∀
X
⊆
A
:
f
−
1
[
f
[
X
]
]
=
X
(
1
)
Let
∀
X
⊆
A
:
f
−
1
[
f
[
X
]
]
=
X
Let
a
1
≠
a
2
∈
A
Let
X
=
{
a
1
}
f
[
X
]
=
{
f
(
a
1
)
}
f
−
1
[
f
[
X
]
]
=
X
⟹
a
2
∉
f
−
1
[
f
[
X
]
]
⟹
f
(
a
2
)
∉
f
[
X
]
⟹
f
(
a
2
)
≠
f
(
a
1
)
⟹
f
is injective
(
2
)
(
1
)
∧
(
2
)
⟹
∀
X
⊆
A
:
X
=
f
−
1
[
f
[
X
]
]
⟺
f
is injective