Discrete-math 7

1a

If invertible, find the inverse of f:ZN0,f(n)=|n|Solution:Let nN0N0ZnZ(n)Z:f(n)=|n|=nf is surjectivef(1)=f(1)f is not injectivef is not bijectivef is not invertible

1b

If invertible, find the inverse of f:RR+,f(x)=102xSolution:Let f1:R+R,f1(x)=2log(x)Let xR:(f1f)(x)=f1(f(x))=2log(102x)=2(2x)=x(f1f)=IdR(1)Let xR+:(ff1)(x)=f(f1(x))=102(2log(x))=10log(x)=x(ff1)=IdR+(2)(1)(2)f1:R+R,f1(x)=2log(x) is an inverse of f

2

Let A=R{1}

2a

f:AR,f(x)=x+1x1Is f injective? Is it surjective?Solution:Let x1,x2Af(x1)=f(x2)x1+1x11=x2+1x21(x1+1)(x21)=(x2+1)(x11)x1x2+x2x11=x1x2+x1x212x2=2x1x1=x2f is injectivexR:x+1x1f(x)=x+1x11Rf is not surjective

2b

f:AA,f(x)=x+1x1Prove that f is invertible and find an inverseProof:Let yA:f(x)=yf(x)=x+1x1y=x+1x1yxy=x+1x=y+1y1Let f1:AA,f1(x)=x+1x1(f1f)(x)=x+1x1+1x+1x11=x+1+x1x1x+1x+1x1=2x2=x(f1f)=IdA(1)(ff1)(x)=x+1x1+1x+1x11=x+1+x1x1x+1x+1x1=2x2=x(ff1)=IdA(2)(1)(2)f1=f

3

Let f:AALet fn=(fff)n times where nNLet f0=IdA

3a

Prove: [nN:xA:fn(x)=x]f is invertibleProof:nN:xA:fn=(fn1f)=(ffn1)=IdAfn1=f1f is invertible

3b

Prove: xA:nN:fn(x)=xf is invertibleProof:Let x1,x2A,f(x1)=f(x2)n,mN:fn(x1)=x1,fm(x2)=x2f(x1)=f(x2)fnm1(f(x1))=fnm1(f(x2))fnm1(f(x1))=fnm(x1)=(fnfnfnm times)(x1)=x1fnm1(f(x2))=fnm(x2)=(fmfmfmn times)(x2)=x2x1=x2f is injectiveLet yAnN:fn(y)=yfn(y)=f(fn1(y))=yyA:x=fn1(y):f(x)=yf is surjectivef is bijectivef is invertible

4

Let g:NNLet F:NNNN,F(f)=(gf)Prove: F is injectiveg is injectiveProof:Let g be injectiveLet f1,f2NNF(f1)=F(f2)(gf1)=(gf2)nN:g(f1(n))=g(f2(n))g is injectivenN:f1(n)=f2(n)f1=f2F is injectiveg is injectiveF is injective(1)Let F be injectiveLet x1,x2N:g(x1)=g(x2)Let f1,f2NN:f1(n)=x1,f2(n)=x2Let nNF(f1)(n)=(gf1)(n)=g(f1(n))=g(x1)F(f2)(n)=(gf2)(n)=g(f2(n))=g(x2)g(x1)=g(x2)nN:F(f1)(n)=F(f2)(n)F(f1)=F(f2)F is injectivef1=f2nN:f1(n)=f2(n)x1=x2g is injectiveF is injectiveg is injective(2)(1)(2)F is injectiveg is injective

5

 on NNfgkN:n>k:f(n)=g(n)

5a

Prove:  is an equivalence relationProof:Let fNNn>1N:f(n)=f(n)ff is reflexiveLet f,gNNfgkN:n>k:f(n)=g(n)kN:n>k:g(n)=f(n)gf is symmetricLet f,g,hNN,fg,ghfgk1N:n>k1:f(n)=g(n)ghk2N:n>k2:g(n)=h(n)k=max(k1,k2):n>k:f(n)=g(n)=h(n)fhis transitive is reflexive, symmetric and transitive is an equivalence relation

5b

Find gNNsuch that f[g]:f is not surjectiveSolution:Let g:NN,g(n)=1fgkN:n>k:f(n)=g(n)=1Let K=[k+1]f(k+1)=1f[K]=f[[kk]]{1}n>k:f(n)=1Im(f)=f[[kk]]{1}=f[K]f[K] is a finite set,f[K]Nf[K]NIm(f)Nf is not surjective

6

Let A=RRR,S,T are relations on A

6a

fRg(fg)=(gf)Determine and prove whether R is an equivalence relationDisproof:Let f,g,hALet f(x)=x+1Let g=IdRLet h(x)=x3(gf)=(fg)=ffRg(hg)=(gh)=hgRhLet x=1(hf)(x)=(x+1)3=8,(fh)(x)=x3+1=2(hf)(fh)fhR is not transitiveR is not an equivalence relation

6b

fSgyR:xR:(x>y)(f(x)=g(x))Determine and prove whether S is an equivalence relationDisproof:Let f(x)=sin(x)Let g(x)=0Let h(x)=sin(x)1yR:xR:x>ysin(x)=0fSgyR:xR:x>y0=sin(x)1gShxR:sin(x)sin(x)1fhS is not transitiveS is not an equivalence relation

6c

fTgyR:xR:(x>y)(f(x)=g(x))Determine and prove whether T is an equivalence relationProof:Let fAfA:x>0R:f(x)=f(x)fTfT is reflexiveLet f,gA:fTgfTgyR:xR:(x>y)(f(x)=g(x))yR:xR:(x>y)(g(x)=f(x))gTfT is symmetricLet f,g,hA:fTg,gThfTgy1R:xR:(x>y1)(f(x)=g(x))gThy2R:xR:(x>y2)(g(x)=h(x))y=max(y1,y2):xR:[(x>y)(x>y1x>y2)](f(x)=g(x)=h(x))fThT is transitiveT is reflexive, symmetric and transitiveT is an equivalence relation

7

Let f:AB

7a

Prove or disprove: XA:f[Xc](f[X])cDisproof:Let A=B={1,2,3,4},X={1,2},f(x)=1f[Xc]=f[{3,4}]={1}f[X]={1}(f[X])c={2,3,4}f[Xc](f[X])c

7b

Prove or disprove: X,YA:f[XY]=f[X]f[Y]f is injectiveProof: Let X,YA:f[XY]=f[X]f[Y]Let a1,a2A:f(a1)=f(a2)Let X={a1},Y={a2}f[XY]=f[X]f[Y]f[X]f[Y]=f[{a1}]f[{a2}]={f(a1)}{f(a2)}=f[XY]=XY=a1=a2f is injectiveX,YA:f[XY]=f[X]f[Y]f is injective(1)Let f be injectiveLet X,YALet yf[XY]xXY:f(x)=yx(XY)(YX)Let xXYxXy=f(x)f[X]Let yf[Y]x1Y:f(x1)=yf(x1)=y=f(x)f is injectivex1=xYContradiction!xYf is injectivey=f(x)f[Y]yf[X]yf[Y]yf[X]f[Y][1]Let xYXxYy=f(x)f[Y]Let yf[X]x1X:f(x1)=yf(x1)=y=f(x)f is injectivex1=xXContradiction!xXf is injectivey=f(x)f[X]yf[Y]yf[X]yf[X]f[Y][2][1][2]f[XY]f[X]f[Y](2)Let yf[X]f[Y]y(f[X]f[Y])(f[Y]f[X])Let yf[X]f[Y]yf[X]xX:f(x)=yyf[Y]xY:f(x)y[f(x)=yxY]xXY:f(x)=yyf[XY][3]Let yf[Y]f[X]yf[Y]xY:f(x)=yyf[X]xX:f(x)y[f(x)=yxX]xYX:f(x)=yyf[XY][4][3][4]f[X]f[Y]f[XY](3)(2)(3)X,YA:f[XY]=f[X]f[Y]f is injective(4)(1)(4)X,YA:f[XY]=f[X]f[Y]f is injective

7c

Prove or disprove: XA:Xf1[f[X]]Proof:Let XALet xXxXf(x)f[X]xf1[f[X]]Xf1[f[X]]

7d

Prove or disprove: XA:X=f1[f[X]]f is injectiveProof:Let f is injectiveLet af1[f[X]]af1[f[X]]f(a)f[X]Let a1A:f(a1)=f(a)f(a1)=f(a)f[X]a1Xf is injective: f(a1)=f(a)a1=aaXf1[f[X]]XXA:Xf1[f[X]]f1[f[X]]XXA:f1[f[X]]=X(1)Let XA:f1[f[X]]=XLet a1a2ALet X={a1}f[X]={f(a1)}f1[f[X]]=Xa2f1[f[X]]f(a2)f[X]f(a2)f(a1)f is injective(2)(1)(2)XA:X=f1[f[X]]f is injective