Discrete-math 8

1

ABProve: f:AB is surjectiveπf={f1[{b}]|bB} is a partition of AProof:Let f be surjectiveLet R={(a,b)|f(a)=f(b)},RA×AaA:f(a)=f(a)aRaR is reflexiveaRbf(a)=f(b)f(b)=f(a)bRaR is symmetricaRbbRcf(a)=f(b)=f(c)f(a)=f(c)aRcR is transitiveR is an equivalence relationf is surjectivebB:cA:f(c)=bLet cA,bB:f(c)=b[c]R={aA|f(a)=f(c)=b}f1[{b}]={aA|f(a)=b}cA:[c]R=f1[{b}]πf=A/R

2a

f:NNProve or disprove: ABN:f1[A]f1[B]f is injectiveDisproof:Let f(n)=n2Meaning: f(2n1)=f(2n)=nf(1)=f(2)f is not injectiveLet ABNnN:nABnN:f1[{n}]={2n,2n1}nmN:|nm|1|2n2m|=2|nm|22m2n2m1nmN:2nf1[{m}]{nA2nf1[A]nB2nf1[B]f1[A]f1[B]AB:f1[A]f1[B] and f is not injective

2b

f:NNProve or disprove: ABN:f1[A]f1[B]f is surjectiveProof:Let ABN:f1[A]f1[B]Let f be not surjectivemN:mIm(f)Let A={m},B=ABf1[B]=f1[A]={nN|f(n)=m}=f1[A]=f1[B]Contradiction!f is surjective

3

Let R be a relation on ALet f:AAf respects R if:a,bA:aRbf(a)=f(b)Given f, define f^:A/RA[a]RA/R:f^([a]R)=f(a)

3a

f respects RProve: f^ is well-defined (it is unique and complete)it actually should be called to-one, because unique means that there is only one function,not only one image for each sourceProof:aA:[a]R={bA|bRa}={bA|f(b)=f(a)}[a]RA/R:aAf(a)f^([a]R)=f(a)f^ is completeLet [a]R,[b]RA/R:[a]R=[b]Rf^([a]R)=f(a)f^([b]R)=f(b)[a]R=[b]RaRbf(a)=f(b)f^([a]R)=f(a)=f(b)=f^([b]R)f^ is "unique" (to-one)f^ is "unique" (to-one) and completef^ is well-defined

3b

f respects RLet f be injectivea,bA:aRbf(a)=f(b)a=ba,bA:aRba=bR=IdaLet C,DA/R, prove f^[CD]=f^[C]f^[D]Proof:Let aAf(a)f^[CD][a]RCD[a]RC[a]RDf(a)f^[C]f(a)f^[D]f(a)f^[C]f^[D]f^[CD]=f^[C]f^[D]Let C,DA/R, show that it’s not necessarily true that f^[CD]=f^[C]f^[D]Solution:Let A={1,2,3}Let f(1)=f(2)=f(3)=1Let R=IdA{(1,2),(2,1)}[1]R={1},[2]R={2}Let C={[1]R},D={[2]R}f^[CD]=f^[]=f^[C]={f^([1]R)}={f(1)}={1}f^[D]={f^([3]R)}={f(2)}={1}f^[C]f^[D]={1}f^[CD]f^[C]f^[D]

3c

Let f,g:AAProve or disprove: (gf) respects Rf respects RDisproof:Let A={1,2,3}Let aA:g(a)=1Let f=IdALet R=IdA{(1,2),(2,1)}g(f(1))=g(f(2))(gf) respects Rf(1)f(2)f doesn’t respect RProve or disprove: f respects R(gf) respects RProof:Let a,bALet f respects RaRbf(a)=f(b)g(f(a))=g(f(b)) as g is to-one(gf) respects R

4

X,Y,Z are setsf:XYg:YZh=(gf)

4a

Prove or disprove: CX,h is injectivef1[f[C]]=CProof:h is injectivef is injectiveLet cCcCf(c)f[C]cf1[f[C]]Cf1[f[C]]Let cf1[f[C]]cf1[f[C]]f(c)f[C]f is injectivecCC=f1[f[C]]

4b

Prove or disprove: CY,h is surjectivef[f1[C]]=CDisproof:Let X={1,2},Y={3,4},Z={5}f(1)=f(2)=3g(3)=g(4)=5h(1)=5,h(2)=5,h is surjectiveLet C={3,4}f1[3,4]={1,2}f[f1[C]]=f[{1,2}]={3}Cf[f1[C]]C

4c

Prove or disprove: C,DY,h is surjectiveg[CD]=g[C]g[D]Disproof:Let X={1,2,3},Y={4,5,6},Z={7,8}Let f(x)=x+3,g(4)=g(6)=7,g(5)=8h(1)=h(3)=7,h(2)=8,h is surjectiveLet C={4,5},D={5,6}g[CD]=g[{5}]={8}g[C]g[D]=g[{4,5}]g[{5,6}]={7,8}{7,8}={7,8}g[CD]g[C]g[D]

5

f:AABAB1=B,Bn+1=f1[Bn]x is called a fixed point of f if f(x)=x

5a

Prove or disprove: BA:nNBn=f has no fixed pointsProof:Let x0A:f(x0)=x0Let B={x0}Base case. B1=B={x0}x0B1Induction step. Let x0Bnx0Bnx0f1[Bn]x0Bn+1By induction: x0nNBnnNBnBA:nNBnBA:nNBn=f has no fixed points

5b

Prove or disprove: f has no fixed pointsBA:nNBn=Disproof:Let A={1,2}f(1)=2,f(2)=1f has no fixed pointsLet B={1,2}nN:Bn={1,2}nNBn={1,2}BA:nNBnf has no fixed pointsBA:nNBn=

6

f:NN is called periodic ifp>1N:nN:f(n)=f(n+p)

6a

Prove or disprove: f is periodicf is not surjectiveProof:Let f be periodicp>1N:nN:f(n)=f(n+p)Let p>1NLet P=f[[pp]]={f(1),f(2),,f(p)}|P|pP is finiteLet nNIf n[p], then f(n)PIf n>p, then n1,n2N:n1<p,n=n1+n2pf(n)=f(n1+n2p)=f(n1)PnN:f(n)PIm(f)=PIm(f) is finiteIm(f)Nf is not surjective

6b

Prove or disprove: f:f2 is periodicf is periodicDisproof:f={1n is oddn+1n is evenLet nNIf n is odd, then f(n)=1f(f(n))=1If n is even, then f(n)=n+1oddf(f(n))=1nN:f(f(n))=1f2 is periodicLet p>1NLet nN be evenIf p is even, then f(n+p)=n+p+1n+1f(n)f(n+p)If p is odd, then f(n+p)=1n+1f(n)f(n+p)p>1N:nN:f(n)f(n+p)f is not periodicf:f2 is periodic and f is not periodic