Infi-1 10

1a

Prove by definition: limx4x33xx+12x2+x+17=1Proof:Let xn4,xn4Then f(xn)=xn33xnxn+12xn2+xn+17limn2xn2242=32+xn4=2+17=510limnxn33xnxn+12xn2+xn+17=limnxn33xnxn+1limn2xn2+xn+17==151limnxn343=643xn34=12xn4=2+1=15151=1limx4x33xx+12x2+x+17=1

1b

Let f(x)={x2+8x<28x2+2x2Prove by definition: limx2f(x)Proof:Let xn<2,xn2limnf(xn)=xn<2limnxn222=4+8=12Let yn>2,yn2limnf(yn)=yn>2limn8yn2822=32+2=34xn2f(xn)12yn2f(yn)34By definition: limx2f(x)

1c

Prove by definition: limx1sin(1(x1)2)Proof:Let xn1,xn1xn1xn10(xn1)20+1(xn1)2=limnsin(1(xn1)2)By definition: limx1sin(1(x1)2)

2a

limx036x616xSolution:limx036x616x=limx0(36x6)(36x+6)16x(36x+6)==limx036x3616x(36x+6)=limx0116(36x36=6+6)=11612=1192limx036x616x=1192

2b

limx89x4x3Solution:limx84x32=20limx89x4x3=limx89xlimx84x3=12limx89x=12limx89x4x3=12

2c

limxx1/xSolution:limxx1/x=limxeln(x)/xlimxln(x)x=0limxeln(x)/x=e0=1limxx1/x=1

2d

limx036+x+9+x+4+xx2+x4Solution:x0x2+x4>0,x2+x40+x036+x36=6x09+x9=3x04+x4=2limx036+x+9+x+4+x=6+3+2=11limx036+x+9+x+4+xx2+x4=

2e

limxπ2+tanxtanx+2tanxSolution:Let t=tanxxπ2+tlimttt+2t=limttt2t=limt112ttlimt2t0+t=0limt112tt0=1limxπ2+tanxtanx+2tanx=1

2f

limx3sin(x3)sin(9x227x)Solution:limx3sin(x3)sin(9x227x)=limx3sin(x3)x31(x3)(9x227x)sin(9x227x)9x227x1==limx3x39x227x=limx319x=127limx3sin(x3)sin(9x227x)=127

2g

limx0x8esin(65x)(1cos(x2))7sin(x6)Solution:limx0x8esin(65x)(1cos(x2))7sin(x6)=limx0x8esin(65x)(1cos(x2))7x6sin(x6)x61==17limx0x2esin(65x)(1cos(x2))limx0x20esin(65x)0(1cos(x2)1)0=0e00=0limx0x8esin(65x)(1cos(x2))7sin(x6)=170=0

2h

limx0(cosx)1/xSolution:limx0(cosx)1/x=limx0eln(cosx)/xlimx0ln(cosx)x=limx0ln(1+(cosx1))cosx11cosx1x=limx0cosx1x==limx01cosxx=0=0limx0eln(cosx)/x=e0=1limx0(cosx)1/x=1

2i

limx(1+x2+x)1x1xSolution:limx(1+x2+x)1x1x=limxeln(1+x2+x)1x1xlimx1+x2+x=limx11+11+x0=1limxln(1+x2+x)=ln(1)=0limx1x1x=limx1x(1x)(1+x)=limx11+x=0limxln(1+x2+x)1x1x=00=0limxeln(1+x2+x)1x1x=e0=1limx(1+x2+x)1x1x=1

2j

limx(1+x2+x)1x1xSolution:limx1+x2+x=limx11+11+x0=1limx1x1x=limx(1x)(1+x)1x=limx1+x=limx(1+x2+x)1x1x=elimx1x1x1+x(2+x)2+xlimx1x1x1+x(2+x)2+x=limx1+x2+x=limx1x0+1x02x+11=0=0limx(1+x2+x)1x1x=e0=1

3a

Does there exist aR such thatf(x)={ax=111+e1x1x1is continuous on R?Solution:limx1f(x)=limx111+e1x1Let x1+x>1x10+1x1e1x11+e1x1limx1+11+e1x1=0Let x1x<1x101x1e1x10limx111+e1x1=1limx1f(x)limx1+f(x)f is not continuous at 1 for any af is not continuous on R

3b

Find a,b,cR such thatf(x)={a+sin(ex)esinxx<0bx=09+xcxx>0 is continuous on RSolution:esinx0a+sin(ex)esinx is continuousx>09+xcx is continuousThe only problematic point is 0limx0f(x)=limx0a+sin(ex)esinxx0exe0=1sin(ex)sin(1)x0sinx0esinxe0=1limx0a+sin(ex)esinx=a+sin(1)limx0+f(x)=limx0+9+xcx=limx0+9+xc2x(9+x+c)Let c39+xc0limx0+f(x)=c=3limx0+9+x9x(9+x+3)=limx0+19+x+3=16f is continuous at 0 if and only if: limx0f(x)=limx0+f(x)=f(0)a+sin(1)=16=b{a=16sin(1)b=16c=3f is continuous at 0f is continuous on R

4a

Find discontinuities of f(x)=e1x3Solution:eg(x) is continuous at x0g(x) is continuous at x0Discontinuities of f are discontinuities of 1x31x3 is continuous on R{0}f(x) is undefined at 0limx0f(x)=limx0e1x3=0 is an essential (second kind) discontinuity of f

4b

Find discontinuities of f(x)=|x3+x5+x7|x3+x5+x7Solution:x<0x3+x5+x7<0f(x)=1x>0x3+x5+x7>0f(x)=1f(x) is undefined at 0limx0+f(x)=limx0+x3+x5+x7x3+x5+x7=1limx0f(x)=limx0x3+x5+x7x3+x5+x7=1{limx0+f(x)Rlimx0f(x)Rlimx0+f(x)limx0f(x)0 is a jump discontinuity of f

4c

Find discontinuities of f(x)=1+x1+x3Solution:1+x3=(1+x)(1x+x2)1x+x2>0f(x) is undefined at 1limx11+x1+x3=limx111x+x2=131 is a removable discontinuity of f

4d

Find discontinuities of f(x)=sinx|x|Solution:sinx is continuous on R1|x| is continuous on R{0}f(x) is continuous on R{0}limx0+f(x)=limx0+sin(x)x=1limx0f(x)=limx0sin(x)x=1{limx0+f(x)Rlimx0f(x)Rlimx0+f(x)limx0f(x)0 is a jump discontinuity of f

4e

Find discontinuities of f(x)=x2+11xSolution:x2+11 is continuous on R1x is continuous on R{0}f(x) is continuous on R{0}f(x) is undefined at 0limx0f(x)=limx0x2+11x=limx0x2+11x(x2+1+1)==limx0xx2+1+1=00 is a removable discontinuity of f

4f

Find discontinuities of f(x)={7+x3x24x9x2+81x281x>9Solution:Let g(x)=7+x3x24g(x) is undefined on (,7)g(x) is also undefined for x7Limit of g(x) when x7 is also undefinedg can be considered continuous at -7, as limx7+g(x)=g(7)=115x9:f(x)=g(x)f can be considered continuous at -77+x3 is continuous on (7,)1x24 is continuous on R{2,2}g(x) is continuous on [7,2)(2,2)(2,)limx2+7+x3x24=2 is an essential (second kind) discontinuity of gx9:f(x)=g(x)2 is an essential (second kind) discontinuity of flimx27+x3x24=limx27+x9(x2)(x+2)(7+x+3)=limx21(x+2)(7+x+3)=1242 is a removable discontinuity of gx9:f(x)=g(x)2 is a removable discontinuity of fx2+81 is continuous on R1x281 is continuous on R{9,9}limx9+f(x)=limx9+x2+81x281=9 is an essential (second kind) discontinuity of f{f(x) is undefined for x<72 is an essential (second kind) discontinuity of f2 is a removable discontinuity of f9 is an essential (second kind) discontinuity of f