Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 10
1a
Prove by definition:
lim
x
→
4
x
3
−
3
x
−
x
+
1
2
x
2
+
x
+
17
=
1
Proof:
Let
x
n
≠
4
,
x
n
→
4
Then
f
(
x
n
)
=
x
n
3
−
3
x
n
−
x
n
+
1
2
x
n
2
+
x
n
+
17
lim
n
→
∞
2
x
n
2
⏟
→
2
⋅
4
2
=
32
+
x
n
⏟
→
4
=
2
+
17
=
51
≠
0
⟹
lim
n
→
∞
x
n
3
−
3
x
n
−
x
n
+
1
2
x
n
2
+
x
n
+
17
=
lim
n
→
∞
x
n
3
−
3
x
n
−
x
n
+
1
lim
n
→
∞
2
x
n
2
+
x
n
+
17
=
=
1
51
⋅
lim
n
→
∞
x
n
3
⏟
→
4
3
=
64
−
3
x
n
⏟
→
3
⋅
4
=
12
−
x
n
⏟
→
4
=
2
+
1
=
1
51
⋅
51
=
1
⟹
lim
x
→
4
x
3
−
3
x
−
x
+
1
2
x
2
+
x
+
17
=
1
1b
Let
f
(
x
)
=
{
x
2
+
8
x
<
2
8
x
2
+
2
x
≥
2
Prove by definition:
∄
lim
x
→
2
f
(
x
)
Proof:
Let
x
n
<
2
,
x
n
→
2
lim
n
→
∞
f
(
x
n
)
=
⏟
x
n
<
2
lim
n
→
∞
x
n
2
⏟
→
2
2
=
4
+
8
=
12
Let
y
n
>
2
,
y
n
→
2
lim
n
→
∞
f
(
y
n
)
=
⏟
y
n
>
2
lim
n
→
∞
8
y
n
2
⏟
→
8
⋅
2
2
=
32
+
2
=
34
x
n
→
2
⟹
f
(
x
n
)
→
12
y
n
→
2
⟹
f
(
y
n
)
→
34
⟹
By definition:
∄
lim
x
→
2
f
(
x
)
1c
Prove by definition:
∄
lim
x
→
1
sin
(
1
(
x
−
1
)
2
)
Proof:
Let
x
n
≠
1
,
x
n
→
1
x
n
→
1
⟹
x
n
−
1
→
0
⟹
(
x
n
−
1
)
2
→
0
+
⟹
1
(
x
n
−
1
)
2
=
∞
⟹
∄
lim
n
→
∞
sin
(
1
(
x
n
−
1
)
2
)
⟹
By definition:
∄
lim
x
→
1
sin
(
1
(
x
−
1
)
2
)
2a
lim
x
→
0
36
−
x
−
6
16
x
Solution:
lim
x
→
0
36
−
x
−
6
16
x
=
lim
x
→
0
(
36
−
x
−
6
)
(
36
−
x
+
6
)
16
x
(
36
−
x
+
6
)
=
=
lim
x
→
0
36
−
x
−
36
16
x
(
36
−
x
+
6
)
=
lim
x
→
0
−
1
16
(
36
−
x
⏟
→
36
=
6
+
6
)
=
−
1
16
⋅
12
=
−
1
192
⟹
lim
x
→
0
36
−
x
−
6
16
x
=
−
1
192
2b
lim
x
→
8
9
−
x
4
−
x
3
Solution:
lim
x
→
8
4
−
x
3
⏟
→
2
=
2
≠
0
⟹
lim
x
→
8
9
−
x
4
−
x
3
=
lim
x
→
8
9
−
x
lim
x
→
8
4
−
x
3
=
1
2
⋅
lim
x
→
8
9
−
x
=
1
2
⟹
lim
x
→
8
9
−
x
4
−
x
3
=
1
2
2c
lim
x
→
∞
x
1
/
x
Solution:
lim
x
→
∞
x
1
/
x
=
lim
x
→
∞
e
ln
(
x
)
/
x
lim
x
→
∞
ln
(
x
)
x
=
0
⟹
lim
x
→
∞
e
ln
(
x
)
/
x
=
e
0
=
1
⟹
lim
x
→
∞
x
1
/
x
=
1
2d
lim
x
→
0
36
+
x
+
9
+
x
+
4
+
x
x
2
+
x
4
Solution:
x
→
0
⟹
x
2
+
x
4
>
0
,
x
2
+
x
4
→
0
+
x
→
0
⟹
36
+
x
→
36
=
6
x
→
0
⟹
9
+
x
→
9
=
3
x
→
0
⟹
4
+
x
→
4
=
2
⟹
lim
x
→
0
36
+
x
+
9
+
x
+
4
+
x
=
6
+
3
+
2
=
11
⟹
lim
x
→
0
36
+
x
+
9
+
x
+
4
+
x
x
2
+
x
4
=
∞
2e
lim
x
→
π
2
+
tan
x
tan
x
+
2
tan
x
Solution:
Let
t
=
−
tan
x
x
→
π
2
+
⟹
t
→
∞
lim
t
→
∞
−
t
−
t
+
2
−
t
=
lim
t
→
∞
t
t
−
2
−
t
=
lim
t
→
∞
1
1
−
2
−
t
t
lim
t
→
∞
2
−
t
⏞
→
0
+
t
⏟
→
∞
=
0
⟹
lim
t
→
∞
1
1
−
2
−
t
t
⏟
→
0
=
1
⟹
lim
x
→
π
2
+
tan
x
tan
x
+
2
tan
x
=
1
2f
lim
x
→
3
sin
(
x
−
3
)
sin
(
9
x
2
−
27
x
)
Solution:
lim
x
→
3
sin
(
x
−
3
)
sin
(
9
x
2
−
27
x
)
=
lim
x
→
3
sin
(
x
−
3
)
x
−
3
⏞
→
1
(
x
−
3
)
(
9
x
2
−
27
x
)
sin
(
9
x
2
−
27
x
)
9
x
2
−
27
x
⏟
→
1
=
=
lim
x
→
3
x
−
3
9
x
2
−
27
x
=
lim
x
→
3
1
9
x
=
1
27
⟹
lim
x
→
3
sin
(
x
−
3
)
sin
(
9
x
2
−
27
x
)
=
1
27
2g
lim
x
→
0
x
8
e
sin
(
65
x
)
(
1
−
cos
(
x
2
)
)
7
sin
(
x
6
)
Solution:
lim
x
→
0
x
8
e
sin
(
65
x
)
(
1
−
cos
(
x
2
)
)
7
sin
(
x
6
)
=
lim
x
→
0
x
8
e
sin
(
65
x
)
(
1
−
cos
(
x
2
)
)
7
x
6
sin
(
x
6
)
x
6
⏟
→
1
=
=
1
7
lim
x
→
0
x
2
e
sin
(
65
x
)
(
1
−
cos
(
x
2
)
)
lim
x
→
0
x
2
⏟
→
0
e
sin
(
65
x
)
⏞
→
0
(
1
−
cos
(
x
2
)
⏟
→
1
)
⏟
→
0
=
0
⋅
e
0
⋅
0
=
0
⟹
lim
x
→
0
x
8
e
sin
(
65
x
)
(
1
−
cos
(
x
2
)
)
7
sin
(
x
6
)
=
1
7
⋅
0
=
0
2h
lim
x
→
0
(
cos
x
)
1
/
x
Solution:
lim
x
→
0
(
cos
x
)
1
/
x
=
lim
x
→
0
e
ln
(
cos
x
)
/
x
lim
x
→
0
ln
(
cos
x
)
x
=
lim
x
→
0
ln
(
1
+
(
cos
x
−
1
)
)
cos
x
−
1
⏟
→
1
⋅
cos
x
−
1
x
=
lim
x
→
0
cos
x
−
1
x
=
=
−
lim
x
→
0
1
−
cos
x
x
=
−
0
=
0
⟹
lim
x
→
0
e
ln
(
cos
x
)
/
x
=
e
0
=
1
⟹
lim
x
→
0
(
cos
x
)
1
/
x
=
1
2i
lim
x
→
∞
(
1
+
x
2
+
x
)
1
−
x
1
−
x
Solution:
lim
x
→
∞
(
1
+
x
2
+
x
)
1
−
x
1
−
x
=
lim
x
→
∞
e
ln
(
1
+
x
2
+
x
)
1
−
x
1
−
x
lim
x
→
∞
1
+
x
2
+
x
=
lim
x
→
∞
1
1
+
1
1
+
x
⏟
→
0
=
1
⟹
lim
x
→
∞
ln
(
1
+
x
2
+
x
)
=
ln
(
1
)
=
0
lim
x
→
∞
1
−
x
1
−
x
=
lim
x
→
∞
1
−
x
(
1
−
x
)
(
1
+
x
)
=
lim
x
→
∞
1
1
+
x
=
0
⟹
lim
x
→
∞
ln
(
1
+
x
2
+
x
)
1
−
x
1
−
x
=
0
⋅
0
=
0
⟹
lim
x
→
∞
e
ln
(
1
+
x
2
+
x
)
1
−
x
1
−
x
=
e
0
=
1
⟹
lim
x
→
∞
(
1
+
x
2
+
x
)
1
−
x
1
−
x
=
1
2j
lim
x
→
∞
(
1
+
x
2
+
x
)
1
−
x
1
−
x
Solution:
lim
x
→
∞
1
+
x
2
+
x
=
lim
x
→
∞
1
1
+
1
1
+
x
⏟
→
0
=
1
lim
x
→
∞
1
−
x
1
−
x
=
lim
x
→
∞
(
1
−
x
)
(
1
+
x
)
1
−
x
=
lim
x
→
∞
1
+
x
=
∞
⟹
lim
x
→
∞
(
1
+
x
2
+
x
)
1
−
x
1
−
x
=
e
lim
x
→
∞
1
−
x
1
−
x
⋅
1
+
x
−
(
2
+
x
)
2
+
x
lim
x
→
∞
1
−
x
1
−
x
⋅
1
+
x
−
(
2
+
x
)
2
+
x
=
−
lim
x
→
∞
1
+
x
2
+
x
=
−
lim
x
→
∞
1
x
⏞
→
0
+
1
x
⏞
→
0
2
x
+
1
⏟
→
1
=
−
0
=
0
⟹
lim
x
→
∞
(
1
+
x
2
+
x
)
1
−
x
1
−
x
=
e
0
=
1
3a
Does there exist
a
∈
R
such that
f
(
x
)
=
{
a
x
=
1
1
1
+
e
1
x
−
1
x
≠
1
is continuous on
R
?
Solution:
lim
x
→
1
f
(
x
)
=
lim
x
→
1
1
1
+
e
1
x
−
1
Let
x
→
1
+
⟹
x
>
1
⟹
x
−
1
→
0
+
⟹
1
x
−
1
→
∞
⟹
e
1
x
−
1
→
∞
⟹
1
+
e
1
x
−
1
→
∞
⟹
lim
x
→
1
+
1
1
+
e
1
x
−
1
=
0
Let
x
→
1
−
x
<
1
⟹
x
−
1
→
0
−
⟹
1
x
−
1
→
−
∞
⟹
e
1
x
−
1
→
0
⟹
lim
x
→
1
−
1
1
+
e
1
x
−
1
=
1
⟹
lim
x
→
1
−
f
(
x
)
≠
lim
x
→
1
+
f
(
x
)
⟹
f
is not continuous at
1
for any
a
⟹
f
is not continuous on
R
3b
Find
a
,
b
,
c
∈
R
such that
f
(
x
)
=
{
a
+
sin
(
e
x
)
e
sin
x
x
<
0
b
x
=
0
9
+
x
−
c
x
x
>
0
is continuous on
R
Solution:
e
sin
x
≠
0
⟹
a
+
sin
(
e
x
)
e
sin
x
is continuous
x
>
0
⟹
9
+
x
−
c
x
is continuous
⟹
The only problematic point is
0
lim
x
→
0
−
f
(
x
)
=
lim
x
→
0
−
a
+
sin
(
e
x
)
e
sin
x
x
→
0
−
⟹
e
x
→
e
0
=
1
⟹
sin
(
e
x
)
→
sin
(
1
)
x
→
0
−
⟹
sin
x
→
0
⟹
e
sin
x
→
e
0
=
1
⟹
lim
x
→
0
−
a
+
sin
(
e
x
)
e
sin
x
=
a
+
sin
(
1
)
lim
x
→
0
+
f
(
x
)
=
lim
x
→
0
+
9
+
x
−
c
x
=
lim
x
→
0
+
9
+
x
−
c
2
x
(
9
+
x
+
c
)
Let
c
≠
3
⟹
9
+
x
−
c
↛
0
⟹
lim
x
→
0
+
f
(
x
)
=
∞
⟹
c
=
3
⟹
lim
x
→
0
+
9
+
x
−
9
x
(
9
+
x
+
3
)
=
lim
x
→
0
+
1
9
+
x
+
3
=
1
6
f
is continuous at
0
if and only if:
lim
x
→
0
−
f
(
x
)
=
lim
x
→
0
+
f
(
x
)
=
f
(
0
)
⟹
a
+
sin
(
1
)
=
1
6
=
b
⟹
{
a
=
1
6
−
sin
(
1
)
b
=
1
6
c
=
3
⟹
f
is continuous at
0
⟹
f
is continuous on
R
4a
Find discontinuities of
f
(
x
)
=
e
−
1
x
3
Solution:
e
g
(
x
)
is continuous at
x
0
⟺
g
(
x
)
is continuous at
x
0
⟹
Discontinuities of
f
are discontinuities of
−
1
x
3
−
1
x
3
is continuous on
R
∖
{
0
}
f
(
x
)
is undefined at
0
lim
x
→
0
−
f
(
x
)
=
lim
x
→
0
−
e
−
1
x
3
⏞
→
∞
=
∞
⟹
0
is an essential (second kind) discontinuity of
f
4b
Find discontinuities of
f
(
x
)
=
|
x
3
+
x
5
+
x
7
|
x
3
+
x
5
+
x
7
Solution:
x
<
0
⟹
x
3
+
x
5
+
x
7
<
0
⟹
f
(
x
)
=
−
1
x
>
0
⟹
x
3
+
x
5
+
x
7
>
0
⟹
f
(
x
)
=
1
f
(
x
)
is undefined at
0
lim
x
→
0
+
f
(
x
)
=
lim
x
→
0
+
x
3
+
x
5
+
x
7
x
3
+
x
5
+
x
7
=
1
lim
x
→
0
−
f
(
x
)
=
lim
x
→
0
−
−
x
3
+
x
5
+
x
7
x
3
+
x
5
+
x
7
=
−
1
{
lim
x
→
0
+
f
(
x
)
∈
R
lim
x
→
0
−
f
(
x
)
∈
R
lim
x
→
0
+
f
(
x
)
≠
lim
x
→
0
−
f
(
x
)
⟹
0
is a jump discontinuity of
f
4c
Find discontinuities of
f
(
x
)
=
1
+
x
1
+
x
3
Solution:
1
+
x
3
=
(
1
+
x
)
(
1
−
x
+
x
2
)
1
−
x
+
x
2
>
0
f
(
x
)
is undefined at
−
1
lim
x
→
−
1
1
+
x
1
+
x
3
=
lim
x
→
−
1
1
1
−
x
+
x
2
=
1
3
⟹
−
1
is a removable discontinuity of
f
4d
Find discontinuities of
f
(
x
)
=
sin
x
|
x
|
Solution:
sin
x
is continuous on
R
1
|
x
|
is continuous on
R
∖
{
0
}
⟹
f
(
x
)
is continuous on
R
∖
{
0
}
lim
x
→
0
+
f
(
x
)
=
lim
x
→
0
+
sin
(
x
)
x
=
1
lim
x
→
0
−
f
(
x
)
=
lim
x
→
0
−
sin
(
x
)
−
x
=
−
1
{
lim
x
→
0
+
f
(
x
)
∈
R
lim
x
→
0
−
f
(
x
)
∈
R
lim
x
→
0
+
f
(
x
)
≠
lim
x
→
0
−
f
(
x
)
⟹
0
is a jump discontinuity of
f
4e
Find discontinuities of
f
(
x
)
=
x
2
+
1
−
1
x
Solution:
x
2
+
1
−
1
is continuous on
R
1
x
is continuous on
R
∖
{
0
}
⟹
f
(
x
)
is continuous on
R
∖
{
0
}
f
(
x
)
is undefined at
0
lim
x
→
0
f
(
x
)
=
lim
x
→
0
x
2
+
1
−
1
x
=
lim
x
→
0
x
2
+
1
−
1
x
(
x
2
+
1
+
1
)
=
=
lim
x
→
0
x
x
2
+
1
+
1
=
0
⟹
0
is a removable discontinuity of
f
4f
Find discontinuities of
f
(
x
)
=
{
7
+
x
−
3
x
2
−
4
x
≤
9
x
2
+
81
x
2
−
81
x
>
9
Solution:
Let
g
(
x
)
=
7
+
x
−
3
x
2
−
4
g
(
x
)
is undefined on
(
−
∞
,
−
7
)
⟹
g
(
x
)
is also undefined for
x
→
−
7
−
⟹
Limit of
g
(
x
)
when
x
→
−
7
−
is also undefined
⟹
g
can be considered continuous at -7, as
lim
x
→
−
7
+
g
(
x
)
=
g
(
−
7
)
=
−
1
15
∀
x
≤
9
:
f
(
x
)
=
g
(
x
)
⟹
f
can be considered continuous at -7
7
+
x
−
3
is continuous on
(
−
7
,
∞
)
1
x
2
−
4
is continuous on
R
∖
{
−
2
,
2
}
⟹
g
(
x
)
is continuous on
[
−
7
,
−
2
)
∪
(
−
2
,
2
)
∪
(
2
,
∞
)
lim
x
→
−
2
+
7
+
x
−
3
x
2
−
4
=
∞
⟹
−
2
is an essential (second kind) discontinuity of
g
∀
x
≤
9
:
f
(
x
)
=
g
(
x
)
⟹
−
2
is an essential (second kind) discontinuity of
f
lim
x
→
2
7
+
x
−
3
x
2
−
4
=
lim
x
→
2
7
+
x
−
9
(
x
−
2
)
(
x
+
2
)
(
7
+
x
+
3
)
=
lim
x
→
2
1
(
x
+
2
)
(
7
+
x
+
3
)
=
1
24
⟹
2
is a removable discontinuity of
g
∀
x
≤
9
:
f
(
x
)
=
g
(
x
)
⟹
2
is a removable discontinuity of
f
x
2
+
81
is continuous on
R
1
x
2
−
81
is continuous on
R
∖
{
−
9
,
9
}
lim
x
→
9
+
f
(
x
)
=
lim
x
→
9
+
x
2
+
81
x
2
−
81
=
∞
⟹
9
is an essential (second kind) discontinuity of
f
⟹
{
f
(
x
)
is undefined for
x
<
−
7
−
2
is an essential (second kind) discontinuity of
f
2
is a removable discontinuity of
f
9
is an essential (second kind) discontinuity of
f