Infi-1 11

1a

Differntiate by definition: f(x)=x35xSolution:f(x)=limh0f(x+h)f(x)h=limh0(x+h)35(x+h)(x35x)h==limh0x3+3x2h+3xh2+h35x5hx3+5xh=limh03x2+3xh+h25=3x25f(x)=3x25

1b

Differentiate by definition: f(x)=x4+1Solution:f(x)=limh0f(x+h)f(x)h=limh0(x+h)4+1x4+1h==limh0(x+h)4+1(x4+1)h((x+h)4+1+x4+1)=limh0((x+h)2x2)((x+h)2+x2)h((x+h)4+1+x4+1)==limh0(x+hx)(x+h+x)(x2+2xh+h2+x2)h((x+h)4+1+x4+1)==limh0(2x+h2x)(2x2+2xh+h22x2)(x+h)4+1x4+1+x4+1=2x2x22x4+1=2x3x4+1f(x)=2x3x4+1

1c

Differentiate by definition: f(x)=2x+53Solution:f(x)=limh0f(x+h)f(x)h=limh02x+2h+532x+53h==limh02x+2h+5(2x+5)h((2x+2h+53)2+2x+2h+532x+53+(2x+53)2)=limh02(2x+2h+532x+53)2+2x+2h+532x+532x+53+(2x+53)2=23(2x+53)2f(x)=23(2x+53)2

2a

Let f be differentiable at x0 and f(x0)=aLet g be differentiable at x0 and g(x0)=bProve by definition: f+g is differentiable at x0 and (f+g)(x0)=a+bProof:f is differentiable at x0limxx0f(x)f(x0)xx0=f(x0)=ag is differentiable at x0limxx0g(x)g(x0)xx0=g(x0)=bBy the limit arithmetics:limxx0f(x)f(x0)xx0+g(x)g(x0)xx0=limxx0f(x)+g(x)(f(x0)+g(x0))xx0==limxx0(f+g)(x)(f+g)(x0)xx0==By the limit arithmeticslimxx0f(x)f(x0)xx0+limxx0g(x)g(x0)xx0=a+b(f+g) is differentiable at x0 and (f+g)(x0)=a+b

2b

Prove by definition: x0R:(1x)=1x2Infer by the chain rule that if g(x) is differentiable at x0 and g(x0)0then (1g)(x0)=g(x0)(g(x0))2Infer by the multiplication rule that if f(x) is also differentiable at x0then (fg)(x0)=f(x0)g(x0)f(x0)g(x0)(g(x0))2Proof:(1x)=limh0(1x+h1x)h=limh0x(x+h)x(x+h)h=limh01x(x+hx)=1x2Let h(x)=1xLet g(x) be differentiable at x0 and g(x0)0Then 1g=(hg)(1g)(x0)=(hg)(x0)=h(g(x0))g(x0)=Given that g(x0)01(g(x0))2g(x0)Let f(x) be differentiable at x0Then fg=f1g(fg)(x0)=(f1g)(x0)=f(x0)(1g)(x0)+f(x0)(1g)(x0)==f(x0)g(x0)+f(x0)(g(x0))(g(x0))2=f(x0)g(x0)+f(x0)g(x0)(g(x0))2

2c

Prove by the inverse function theorem: (arctanx)=11+x2Proof:(arctanx)=(tan1x)Let f(y)=tanyThen by the inverse function theorem (f1)(x)=1f(f1(x))f(y)=(tany)=1cos2(y)f(f1(x))=1(cos(arctanx))2cos2(y)=1sin2(y)+cos2(y)cos2(y)=1tan2(y)+1f(f1(x))=11(tan(arctanx))2+1=x2+1(arctanx)=1f(f1(x))=11+x2

3a

Differentiate f(x)=(((2x+3)4+5)6+7)8+9Solution:Let h(x)=(2x+3)4+5Let g(x)=x6+7f(x)=(g(h(x)))8+9h(x)=4(2x+3)3(2x+3)=4(2x+3)32(g(h(x)))=((h(x))6+7)=6(h(x))5h(x)=6(h(x)5)4(2x+3)32f(x)=((g(h(x)))8+9)=8(g(x))7g(x)=8(g(x))76(h(x)5)4(2x+3)32f(x)=8(((2x+3)4+5)6+7)76((2x+3)4+5)54(2x+3)32

3b

Differentiate f(x)=ln(sin(ln(cos(x))))Solution:f(x)=(ln(sin(ln(cos(x)))))=1sin(ln(cos(x)))(sin(ln(cos(x))))==1sin(ln(cos(x)))cos(ln(cos(x)))(ln(cos(x)))==1sin(ln(cos(x)))cos(ln(cos(x)))1cos(x)(cos(x))=cot(ln(cos(x)))tan(x)

3c

Differentiate f(x)=eeexxSolution:f(x)=(eeex)xeeexx2(eeex)=eeex(eex)=eeexeex(ex)=eeexeexex=e(eex+ex+x)f(x)=(eeexeexex)xeeexx2=e(eex+ex+x)xeeexx2

3d

Differentiate f(x)=7x2+3x16Solution:f(x)=16(7x2+3x16)5(7x2+3x1)=14x+36(7x2+3x16)5

3e

Differentiate f(x)=(sinx)cosxSolution:f(x)=((sinx)cosx)=(ecos(x)ln(sinx))=ecos(x)ln(sinx)(cos(x)ln(sinx))==ecos(x)ln(sinx)(sin(x)ln(sinx)+cosxsinx(sinx))==(sinx)cosx(cot(x)cos(x)sin(x)ln(sinx))

3f

Differentiate f(x)=sin(xcosx)Solution:f(x)=cos(xcosx)(xcosx)(xcosx)=(ecos(x)ln(x))=ecos(x)ln(x)(cos(x)ln(x))=xcosx(sin(x)ln(x)+cosxx)f(x)=cos(xcosx)xcosx(cosxxsin(x)ln(x))

3g

Find f(3)(x) where f(x)=eexSolution:f(x)=(eex)=eex(ex)=f(x)exf(x)=(f(x))=(f(x)ex)=f(x)ex+f(x)(ex)=f(x)exex+f(x)exf(x)=f(x)ex+f(x)f(3)(x)=(f(x))=(f(x)ex+f(x))=(f(x)ex)+f(x)=f(x)ex+f(x)(ex)+f(x)=f(x)ex+f(x)+f(x)exf(3)(x)=(f(x)exex+f(x)ex)ex+f(x)exex+f(x)ex+f(x)exex==f(x)e3x+f(x)e2x+f(x)e2x+f(x)e2x+f(x)ex==eexe3x+3eexe2x+eexex

3h

Find f(2022)(x) where f(x)=sin(2x+3)+2ex+7xSolution:f(2022)(x)=(sin(2x+3)+2ex+7x)(2022)==(sin(2x+3))(2022)+(2ex)(2022)+(7x)(2022)(7x)(2022)=((7x))(2020)=(0)(2020)=0(2ex)(2022)=2(ex)(2022)=2ex(sin(2x+3))=2cos(2x+3)(sin(2x+3))=22sin(2x+3)(sin(2x+3))(3)=23cos(2x+3)(sin(2x+3))(4)=24sin(2x+3)(sin(2x+3))(4k)=24ksin(2x+3)2022=4505+2(sin(2x+3))(2022)=((sin(2x+3))(4505))=(22020sin(2x+3))==22022sin(2x+3)f(2022)(x)=22022sin(2x+3)+2ex

4a

Let f(x)={sin2(x)sin(1x)x00x=0Is f continuous on R?Is f differentiable on R?Is f continuous on R?Solution:sin2(x) is continuous on Rsin(1x) is continuous on R{0}sin2(x)sin(1x) is continuous on R{0}f is continuous on R{0}limx0f(x)=limx0sin2(x)02sin(1x)1sin(1x)1=0=f(0)f is continuous at 0f is continuous on Rlimx0f(x)f(0)x0=sin2(x)sin(1x)x=limx0sinxxlimx0sin(x)sin(1x)=10=0f is differentiable at 0 and f(0)=0Let x0f(x)=sin2(x)sin(1x) which is differentiable at xand f(x)=(sin2(x))sin(1x)+sin2(x)(sin(1x))f(x)=2sin(x)cos(x)sin(1x)sin2(x)cos(1x)x2f(x)={2sin(x)cos(x)sin(1x)sin2(x)cos(1x)x2x00x=02sin(x)cos(x)sin(1x)sin2(x)cos(1x)x2 is continuous on R{0}f(x) is continuous on R{0}limx0f(x)=limx02sin(x)0cos(x)1sin(1x)1sin(1x)1sin2(x)cos(1x)x2==limx0(sinxx)212=1cos(1x)=limx0cos(1x) which does not existf is not continuous at 0f is not continuous on R

4b

Let f be a continuous on RLet g(x)={f(x)sin2(x)xx00x=0Is g continuous at 0? Is g differentiable at 0?Solution:limx0g(x)=limx0f(x)sin2(x)x=limx0sinxx1limx0f(x)sin(x)=limx0f(x)sin(x)f is continuous at 0limx0f(x)=f(0)Rlimx0f(x)sin(x)=limx0f(x)limx0sin(x)=f(0)0=0limx0g(x)=0=g(0)g is continuous at 0limx0g(x)g(0)x0=limx0f(x)sin2(x)x2=limx0f(x)limx0(sinxx)2=f(0)12=f(0)g is differentiable at 0

5a

Calculate 263Solution: Let f(x)=x3f(x)=13(x3)2f(27)=3f(27)=1332=127The "slope" equation at (27,3) is y3=127(x27)y=x27+2Let x=26263y=2+2627Let g(x)=ln(x)g(x)=1xg(1)=0g(1)=11=1The "slope" equation at (1,0) is y0=1(x1)y=x1Let x=1.002ln(1.002)y=1.0021=0.002

5b

Prove: x>0:ln(1+x)<xProof:Let x>0Let f(x)=xln(1+x)f(0)=0f(x)=111+x11+x is monotonically decreasing on [0,)f(x) is monotonically increasing on [0,)x>0:f(x)>f(0)xln(1+x)>0x>ln(1+x)

5c

Find values of a such that f(x)=ax3+4ax2+8x has two local extremumsSolution:f has a local extremum at x0f(x0)=0f has two local extremumsf(x)=0 has two solutionsf(x)=3ax2+8ax+8f(x)=03ax2+8ax+8=0This equation has two solutions when:D=64a296a>064a296a=32a(2a3)a(2a3)>0[a<0a>32Let us now check if these two critical points are in fact extremumsf(x0)>0x0 is a local minimumf(x0)<0x0 is a local maximumf(x)=6ax+8a=2a(3x+4)f(x)=0x=43f(43)=3a(169)8a(43)+8=16a332a3+8=816a3f(43)=0a=32f(x)=0 has only one solutiona<0 or a>32:f(x)0[a<0a>32f has two local extremums

6a

Find local extremums of f(x)=xx for x>0Solution:f(x)=x1/x=eln(x)/xf(x)=eln(x)/x(ln(x)x)=xx1xxln(x)x2=xx1ln(x)x2f(x)=0ln(x)=0x=ex>e1ln(x)<0f(x)<0f(x)<f(e)x<e1ln(x)>0f(x)>0f(x)<f(e)x=e is a local maximum of f

6b

Explain why the local maximum from 6a is also a global maximum of fExplanation:Let x<ex<e1ln(x)>0f(x)>0f(x)<f(e)Let x>ex>e1ln(x)<0f(x)<0f(x)<f(e)xR{e}:f(x)<f(e)x=e is also a global maximum of f

6c

Determine which number is larger: πe or eπSolution:By 6b x>0:f(x)<f(e)x1/x<e1/eLet x=ππ1/π<e1/eπ<eπ/eπe<eπ