Infi-1 2

1a

Prove or disprove: For every non-empty subset of real numbersthere is at least one upper bound or at least one lower boundDisproof:Let S=RS,SRMx=M+1:xSx>MM:xS:xMmx=m1:xSx<mm:xS:xm

1b

Prove or disprove: For every non-empty subset of real numbers,if there is at least one upper bound, then there is at least one lower boundDisproof:Let S={xRx<0}S,SRM=0:xS:xMmx=m1:xSx<mm:xS:xm

1c

Prove or disprove: For every non-empty subset of real numbers,if there is at least one lower bound, then there is at least one upper boundDisproof:Let S={xRx>0}S,SRm=0:xS:xmMx=M+1:xSx>MM:xS:xM

1d

Prove or disprove: For every non-empty subset of rational numberswith a maximum, there is a rational upper bound.Proof:Let S,SQLet MS=max(S)MSS,SQMQLet M=MS, note that MQM=max(S)xS:xMMQ:xS:xM

1e

There exists a non-empty subset of real numberswhose upper bound is equal to its lower boundProof:Let S={0}S,SRLet M=m=0xS:0=mxM=0m=M:xS:mxM

1f

There exists a non-empty subset of real numberswhose upper bound is equal to its lower bound and which has no maximumDisproof:Let S,SRm,M=m:xS:mxMm,M=m:xS:x=m=MMSMS:xS:xMmax(S)

2

Given: AR,A has an upper-boundProve or disprove: B={aaA}B has a lower-bound,inf(B)=sup(A)Proof:A has an upper-boundsup(A)Let sup(A)=Mε>0M:(aA:aM)(aA:a>Mε)ε>0m=M:(aA:ma)(aA:a<m+ε)ε>0m=M:(bB:mb)(bB:b<m+ε)inf(B),inf(B)=M=sup(A)inf(B)B has a lower-bound

3

Given: A,BR have upper-boundsProve or disprove: A+B={a+baA,bB}A+B has an upper-bound,sup(A+B)=sup(A)+sup(B)Proof:A has an upper-boundsup(A)ε>0MA:(aA:aMA)(aA:a>MAε)B has an upper-boundsup(B)ε>0:MB:(bB:bMB)(bB:b>MBε)Let sup(A)=MA,sup(B)=MB(sup(A)sup(B))ε>0MA,MB:(aA,bB:aMAbMB)(aA,bB:a>MAεb>MBε)ε>0MA,MB:(aA,bB:a+bMA+MB)(aA,bB:a+b>MA+MB2ε)ε1=2ε>0M=MA+MB:(a+bA+B:a+bM)(a+bA+B:a+b>Mε1)sup(A+B),sup(A+B)=MA+MB=sup(A)+sup(B)sup(A+B)A+B has an upper-bound

4a

A={14(13)nnN}={1413nnN}Let us prove that sup(A)=14nN:13n>0nN:1413n14nN:3n>n,rR:nN:n>rε>0nN:3n>n>1εε>0nN:1413n>14εsup(A)=14Let us also prove that max(A)max(A)MA:aA:aMLet max(A)=x,xAThen nN:x=1413nLet m=n+1mN1413mA1413m=1413n+1>1413nmN:amAam>xxmax(A)Contradiction!max(A)Let an=1413nnN:an+1>an1413n+1>1413n13n+1>13n133n<13n13<1Sequence an is monotonically ascendingmin(an)=a1a1=1413=112min(an)=112min(an)=min(A)=112min(A)inf(A)=min(A)=112

4b

B={3n1nnN}={31nnN}Let bn=31nnN:bn+1>bn31n+1>31n1n+1<1nn+1>n1>0 Sequence bn is monotonically ascendinglimnbn=sup(bn)=sup(B)limnbn=limn31n=limn3limn1n=30=3sup(bn)=sup(B)=3Let us also prove that max(B)max(B)MB:bB:bMLet max(B)=x,xBThen nN:x=31nLet m=n+1mN31mA31m=31n+1>31nmN:bmBbm>xxmax(B)Contradiction!max(B)bn is a monotonically ascending sequencemin(bn)=b1b1=311=2min(bn)=2min(bn)=min(B)=2min(B)inf(B)=min(B)=2

4c

C={(1)nnnN}Let us prove that C has no upper-bound and thus max(C),sup(C)C has an upper-boundM:cC:cMLet x be an upper-bound of CrRnN:nr+1>rn,m=2nN:(1)mm=2n>nx+1>xcC:c>xx is not an upper-bound - Contradiction1C has no upper-boundmax(C),sup(C)Let us also prove that C has no lower-bound and thus min(C),inf(C)C has a lower-boundm:cC:cmLet x be a lower-bound of CrRnN:nr1<rn,m=2n+1N:(1)mm=2n1<nx1<xcC:c<xx is not a lower-bound - Contradiction1C has no lower-boundmin(C),inf(C)

4d

D={n+1mn,mN}Let us prove that D has no upper-bound and thus max(D),sup(D)D has an upper-boundM:dD:dMLet x be an upper-bound of DrRnN:nr+1>rn,m=1N:n+1m>nx+1>xdD:d>xx is not an upper-bound - Contradiction!D has no upper-boundmax(D),sup(D)Let us prove that min(D),inf(D)=1Let xDThen n,mN:x=n+1mx=n+1m>n+12mDxDdD:d<xmin(D)Let inf(D)=1Then ε>0:(dD:d1)True,n1,1m>0(dD:d<1+ε)Let n=1,m=1ε+1nN,mNd=n+1mDd=1+11ε+11+11ε+1<1+11ε=1+εε>0dD:d<1+εinf(D)=1