Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 2
1a
Prove or disprove: For every non-empty subset of real numbers
there is at least one upper bound or at least one lower bound
Disproof:
Let
S
=
R
S
≠
∅
,
S
⊆
R
∀
M
∃
x
=
M
+
1
:
x
∈
S
∧
x
>
M
⟹
∄
M
:
∀
x
∈
S
:
x
≤
M
∀
m
∃
x
=
m
−
1
:
x
∈
S
∧
x
<
m
⟹
∄
m
:
∀
x
∈
S
:
x
≥
m
1b
Prove or disprove: For every non-empty subset of real numbers,
if there is at least one upper bound, then there is at least one lower bound
Disproof:
Let
S
=
{
x
∈
R
∣
x
<
0
}
S
≠
∅
,
S
⊆
R
∃
M
=
0
:
∀
x
∈
S
:
x
≤
M
∀
m
∃
x
=
m
−
1
:
x
∈
S
∧
x
<
m
⟹
∄
m
:
∀
x
∈
S
:
x
≥
m
1c
Prove or disprove: For every non-empty subset of real numbers,
if there is at least one lower bound, then there is at least one upper bound
Disproof:
Let
S
=
{
x
∈
R
∣
x
>
0
}
S
≠
∅
,
S
⊆
R
∃
m
=
0
:
∀
x
∈
S
:
x
≥
m
∀
M
∃
x
=
M
+
1
:
x
∈
S
∧
x
>
M
⟹
∄
M
:
∀
x
∈
S
:
x
≤
M
1d
Prove or disprove: For every non-empty subset of rational numbers
with a maximum, there is a rational upper bound.
Proof:
Let
S
≠
∅
,
S
⊆
Q
Let
M
S
=
m
a
x
(
S
)
M
S
∈
S
,
S
⊆
Q
⟹
M
∈
Q
Let
M
=
M
S
,
note that
M
∈
Q
M
=
m
a
x
(
S
)
⟹
∀
x
∈
S
:
x
≤
M
⟹
∃
M
∈
Q
:
∀
x
∈
S
:
x
≤
M
1e
There exists a non-empty subset of real numbers
whose upper bound is equal to its lower bound
Proof:
Let
S
=
{
0
}
S
≠
∅
,
S
⊆
R
Let
M
=
m
=
0
∀
x
∈
S
:
0
=
m
≤
x
≤
M
=
0
⟹
∃
m
=
M
:
∀
x
∈
S
:
m
≤
x
≤
M
1f
There exists a non-empty subset of real numbers
whose upper bound is equal to its lower bound and which has no maximum
Disproof:
Let
S
≠
∅
,
S
⊆
R
∃
m
,
M
=
m
:
∀
x
∈
S
:
m
≤
x
≤
M
⟹
∃
m
,
M
=
m
:
∀
x
∈
S
:
x
=
m
=
M
⟹
M
∈
S
⟹
∃
M
∈
S
:
∀
x
∈
S
:
x
≤
M
⟺
∃
m
a
x
(
S
)
2
Given:
A
⊆
R
,
A
has an upper-bound
Prove or disprove:
B
=
{
−
a
∣
a
∈
A
}
⟹
B
has a lower-bound
,
i
n
f
(
B
)
=
−
s
u
p
(
A
)
Proof:
A
has an upper-bound
⟹
∃
s
u
p
(
A
)
Let
s
u
p
(
A
)
=
M
⟺
∀
ε
>
0
∃
M
:
(
∀
a
∈
A
:
a
≤
M
)
∧
(
∃
a
∈
A
:
a
>
M
−
ε
)
⟺
∀
ε
>
0
∃
m
=
−
M
:
(
∀
a
∈
A
:
m
≤
−
a
)
∧
(
∃
a
∈
A
:
−
a
<
m
+
ε
)
⟺
∀
ε
>
0
∃
m
=
−
M
:
(
∀
b
∈
B
:
m
≤
b
)
∧
(
∃
b
∈
B
:
b
<
m
+
ε
)
⟺
∃
i
n
f
(
B
)
,
i
n
f
(
B
)
=
−
M
=
−
s
u
p
(
A
)
∃
i
n
f
(
B
)
⟹
B
has a lower-bound
3
Given:
A
,
B
⊆
R
have upper-bounds
Prove or disprove:
A
+
B
=
{
a
+
b
∣
a
∈
A
,
b
∈
B
}
⟹
A
+
B
has an upper-bound
,
s
u
p
(
A
+
B
)
=
s
u
p
(
A
)
+
s
u
p
(
B
)
Proof:
A
has an upper-bound
⟹
∃
s
u
p
(
A
)
⟺
∀
ε
>
0
∃
M
A
:
(
∀
a
∈
A
:
a
≤
M
A
)
∧
(
∃
a
∈
A
:
a
>
M
A
−
ε
)
B
has an upper-bound
⟹
∃
s
u
p
(
B
)
⟺
∀
ε
>
0
:
∃
M
B
:
(
∀
b
∈
B
:
b
≤
M
B
)
∧
(
∃
b
∈
B
:
b
>
M
B
−
ε
)
Let
s
u
p
(
A
)
=
M
A
,
s
u
p
(
B
)
=
M
B
(
∃
s
u
p
(
A
)
∧
∃
s
u
p
(
B
)
)
⟺
∀
ε
>
0
∃
M
A
,
M
B
:
(
∀
a
∈
A
,
∀
b
∈
B
:
a
≤
M
A
∧
b
≤
M
B
)
∧
(
∃
a
∈
A
,
b
∈
B
:
a
>
M
A
−
ε
∧
b
>
M
B
−
ε
)
⟺
∀
ε
>
0
∃
M
A
,
M
B
:
(
∀
a
∈
A
,
∀
b
∈
B
:
a
+
b
≤
M
A
+
M
B
)
∧
(
∃
a
∈
A
,
b
∈
B
:
a
+
b
>
M
A
+
M
B
−
2
ε
)
⟺
∀
ε
1
=
2
ε
>
0
∃
M
=
M
A
+
M
B
:
(
∀
a
+
b
∈
A
+
B
:
a
+
b
≤
M
)
∧
(
∃
a
+
b
∈
A
+
B
:
a
+
b
>
M
−
ε
1
)
⟺
∃
s
u
p
(
A
+
B
)
,
s
u
p
(
A
+
B
)
=
M
A
+
M
B
=
s
u
p
(
A
)
+
s
u
p
(
B
)
∃
s
u
p
(
A
+
B
)
⟹
A
+
B
has an upper-bound
4a
A
=
{
1
4
−
(
1
3
)
n
∣
n
∈
N
}
=
{
1
4
−
1
3
n
∣
n
∈
N
}
Let us prove that
s
u
p
(
A
)
=
1
4
∀
n
∈
N
:
1
3
n
>
0
⟹
∀
n
∈
N
:
1
4
−
1
3
n
≤
1
4
∀
n
∈
N
:
3
n
>
n
,
∀
r
∈
R
:
∃
n
∈
N
:
n
>
r
⟹
∀
ε
>
0
∃
n
∈
N
:
3
n
>
n
>
1
ε
⟺
∀
ε
>
0
∃
n
∈
N
:
1
4
−
1
3
n
>
1
4
−
ε
⟹
s
u
p
(
A
)
=
1
4
Let us also prove that
∄
m
a
x
(
A
)
∃
m
a
x
(
A
)
⟺
∃
M
∈
A
:
∀
a
∈
A
:
a
≤
M
Let
∃
m
a
x
(
A
)
=
x
,
x
∈
A
Then
∃
n
∈
N
:
x
=
1
4
−
1
3
n
Let
m
=
n
+
1
m
∈
N
⟹
1
4
−
1
3
m
∈
A
1
4
−
1
3
m
=
1
4
−
1
3
n
+
1
>
1
4
−
1
3
n
⟹
∃
m
∈
N
:
a
m
∈
A
∧
a
m
>
x
⟹
x
≠
m
a
x
(
A
)
−
Contradiction!
⟹
∄
m
a
x
(
A
)
Let
a
n
=
1
4
−
1
3
n
∀
n
∈
N
:
a
n
+
1
>
a
n
⟺
1
4
−
1
3
n
+
1
>
1
4
−
1
3
n
⟺
−
1
3
n
+
1
>
−
1
3
n
⟺
1
3
⋅
3
n
<
1
3
n
⟺
1
3
<
1
⟹
Sequence
a
n
is monotonically ascending
⟹
∃
m
i
n
(
a
n
)
=
a
1
a
1
=
1
4
−
1
3
=
−
1
12
⟹
∃
m
i
n
(
a
n
)
=
−
1
12
m
i
n
(
a
n
)
=
m
i
n
(
A
)
=
−
1
12
∃
m
i
n
(
A
)
⟹
i
n
f
(
A
)
=
m
i
n
(
A
)
=
−
1
12
4b
B
=
{
3
n
−
1
n
∣
n
∈
N
}
=
{
3
−
1
n
∣
n
∈
N
}
Let
b
n
=
3
−
1
n
∀
n
∈
N
:
b
n
+
1
>
b
n
⟺
3
−
1
n
+
1
>
3
−
1
n
⟺
1
n
+
1
<
1
n
⟺
n
+
1
>
n
⟺
1
>
0
⟹
Sequence
b
n
is monotonically ascending
⟹
lim
n
→
∞
b
n
=
s
u
p
(
b
n
)
=
s
u
p
(
B
)
lim
n
→
∞
b
n
=
lim
n
→
∞
3
−
1
n
=
lim
n
→
∞
3
−
lim
n
→
∞
1
n
=
3
−
0
=
3
⟹
s
u
p
(
b
n
)
=
s
u
p
(
B
)
=
3
Let us also prove that
∄
m
a
x
(
B
)
∃
m
a
x
(
B
)
⟺
∃
M
∈
B
:
∀
b
∈
B
:
b
≤
M
Let
∃
m
a
x
(
B
)
=
x
,
x
∈
B
Then
∃
n
∈
N
:
x
=
3
−
1
n
Let
m
=
n
+
1
m
∈
N
⟹
3
−
1
m
∈
A
3
−
1
m
=
3
−
1
n
+
1
>
3
−
1
n
⟹
∃
m
∈
N
:
b
m
∈
B
∧
b
m
>
x
⟹
x
≠
m
a
x
(
B
)
−
Contradiction!
⟹
∄
m
a
x
(
B
)
b
n
is a monotonically ascending sequence
⟹
∃
m
i
n
(
b
n
)
=
b
1
b
1
=
3
−
1
1
=
2
⟹
∃
m
i
n
(
b
n
)
=
2
m
i
n
(
b
n
)
=
m
i
n
(
B
)
=
2
∃
m
i
n
(
B
)
⟹
i
n
f
(
B
)
=
m
i
n
(
B
)
=
2
4c
C
=
{
(
−
1
)
n
⋅
n
∣
n
∈
N
}
Let us prove that
C
has no upper-bound and thus
∄
m
a
x
(
C
)
,
∄
s
u
p
(
C
)
C
has an upper-bound
⟺
∃
M
:
∀
c
∈
C
:
c
≤
M
Let
x
be an upper-bound of
C
∀
r
∈
R
∃
n
∈
N
:
n
≥
⌈
r
⌉
+
1
>
r
⟹
∃
n
,
m
=
2
n
∈
N
:
(
−
1
)
m
⋅
m
=
2
n
>
n
≥
⌈
x
⌉
+
1
>
x
⟹
∃
c
∈
C
:
c
>
x
⟹
x
is not an upper-bound - Contradiction1
⟹
C
has no upper-bound
⟹
∄
m
a
x
(
C
)
,
∄
s
u
p
(
C
)
Let us also prove that
C
has no lower-bound and thus
∄
m
i
n
(
C
)
,
∄
i
n
f
(
C
)
C
has a lower-bound
⟺
∃
m
:
∀
c
∈
C
:
c
≥
m
Let
x
be a lower-bound of
C
∀
r
∈
R
∃
n
∈
N
:
−
n
≤
⌈
r
⌉
−
1
<
r
⟹
∃
n
,
m
=
2
n
+
1
∈
N
:
(
−
1
)
m
⋅
m
=
−
2
n
−
1
<
−
n
≤
⌈
x
⌉
−
1
<
x
⟹
∃
c
∈
C
:
c
<
x
⟹
x
is not a lower-bound - Contradiction1
⟹
C
has no lower-bound
⟹
∄
m
i
n
(
C
)
,
∄
i
n
f
(
C
)
4d
D
=
{
n
+
1
m
∣
n
,
m
∈
N
}
Let us prove that
D
has no upper-bound and thus
∄
m
a
x
(
D
)
,
∄
s
u
p
(
D
)
D
has an upper-bound
⟺
∃
M
:
∀
d
∈
D
:
d
≤
M
Let
x
be an upper-bound of
D
∀
r
∈
R
∃
n
∈
N
:
n
≥
⌈
r
⌉
+
1
>
r
⟹
∃
n
,
m
=
1
∈
N
:
n
+
1
m
>
n
≥
⌈
x
⌉
+
1
>
x
⟹
∃
d
∈
D
:
d
>
x
⟹
x
is not an upper-bound - Contradiction!
⟹
D
has no upper-bound
⟹
∄
m
a
x
(
D
)
,
∄
s
u
p
(
D
)
Let us prove that
∄
m
i
n
(
D
)
,
i
n
f
(
D
)
=
1
Let
x
∈
D
Then
∃
n
,
m
∈
N
:
x
=
n
+
1
m
x
=
n
+
1
m
>
n
+
1
2
m
∈
D
⟹
∀
x
∈
D
∃
d
∈
D
:
d
<
x
⟹
∄
m
i
n
(
D
)
Let
∃
i
n
f
(
D
)
=
1
Then
∀
ε
>
0
:
(
∀
d
∈
D
:
d
≥
1
)
⏟
T
r
u
e
,
n
≥
1
,
1
m
>
0
∧
(
∃
d
∈
D
:
d
<
1
+
ε
)
Let
n
=
1
,
m
=
⌈
1
ε
⌉
+
1
n
∈
N
,
m
∈
N
⟹
d
=
n
+
1
m
∈
D
d
=
1
+
1
⌈
1
ε
⌉
+
1
≤
1
+
1
1
ε
+
1
<
1
+
1
1
ε
=
1
+
ε
⟹
∀
ε
>
0
∃
d
∈
D
:
d
<
1
+
ε
⟺
i
n
f
(
D
)
=
1