Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 3
1a
a
n
=
1
n
+
27
Prove:
lim
n
→
∞
a
n
=
0
Proof:
|
1
n
+
27
−
0
|
=
1
n
+
27
<
n
>
N
1
N
+
27
Let
N
=
1
ε
,
ε
>
0
|
1
n
+
27
−
0
|
<
n
>
N
1
1
ε
+
27
<
1
1
ε
=
ε
⟹
∀
ε
>
0
:
∃
N
:
∀
n
>
N
,
n
∈
N
:
|
1
n
+
27
−
0
|
<
ε
⟺
lim
n
→
∞
a
n
=
0
1b
a
n
=
n
+
3
n
+
32
Prove:
lim
n
→
∞
a
n
=
1
Proof:
|
n
+
3
n
+
32
−
1
|
=
|
n
+
3
−
(
n
+
32
)
n
+
32
|
=
29
n
+
32
<
n
>
N
29
N
+
32
Let
N
=
29
ε
,
ε
>
0
|
n
+
3
n
+
32
−
1
|
<
n
>
N
29
29
ε
+
32
<
29
29
ε
=
ε
⟹
∀
ε
>
0
:
∃
N
:
∀
n
>
N
,
n
∈
N
:
|
n
+
3
n
+
32
−
1
|
<
ε
⟺
lim
n
→
∞
a
n
=
1
1c
a
n
=
4
n
2
−
25
n
2
−
16
Prove:
lim
n
→
∞
a
n
=
4
Proof:
|
4
n
2
−
25
n
2
−
16
−
4
|
=
|
4
n
2
−
25
−
4
(
n
2
−
16
)
n
2
−
16
|
=
39
n
2
−
16
<
n
>
N
39
n
2
−
16
Let
N
=
39
ε
+
16
|
4
n
2
−
25
n
2
−
16
−
4
|
<
n
>
N
39
39
ε
+
16
2
−
16
=
39
39
ε
+
16
−
16
=
39
39
ε
=
ε
⟹
∀
ε
>
0
:
∃
N
:
∀
n
>
N
,
n
∈
N
:
|
4
n
2
−
25
n
2
−
16
−
4
|
<
ε
⟺
lim
n
→
∞
a
n
=
4
2a
a
n
=
(
−
1
)
n
n
8
Find
lim
n
→
∞
a
n
Solution:
Let’s assume
lim
n
→
∞
a
n
=
0
|
(
−
1
)
n
n
8
−
0
|
=
1
n
8
<
n
>
N
1
N
8
Let
N
=
1
ε
8
|
(
−
1
)
n
n
8
−
0
|
<
1
1
ε
8
8
=
1
1
ε
=
ε
⟹
∀
ε
>
0
:
∃
N
:
∀
n
>
N
,
n
∈
N
:
|
(
−
1
)
n
n
8
−
0
|
<
ε
⟺
lim
n
→
∞
a
n
=
0
2b
a
n
=
1
+
(
−
1
)
n
2
n
+
24
Find
lim
n
→
∞
a
n
Solution:
Let’s assume
lim
n
→
∞
a
n
=
0
|
1
+
(
−
1
)
n
2
n
+
24
−
0
|
=
1
+
(
−
1
)
n
2
n
+
24
≤
2
2
n
+
24
<
n
>
N
2
2
N
+
24
Let
N
=
1
+
log
2
(
1
ε
)
,
ε
>
0
|
1
+
(
−
1
)
n
2
n
+
24
−
0
|
<
n
>
N
2
2
1
+
log
2
(
1
/
ε
)
+
24
=
2
2
1
ε
+
24
<
2
2
1
ε
=
ε
⟹
∀
ε
>
0
:
∃
N
:
∀
n
>
N
,
n
∈
N
:
|
1
+
(
−
1
)
n
2
n
+
24
−
0
|
<
ε
⟺
lim
n
→
∞
a
n
=
0
2c
a
n
=
n
3
−
n
2
+
n
n
3
+
n
2
−
n
Find
lim
n
→
∞
a
n
Solution:
Let’s assume
lim
n
→
∞
a
n
=
1
|
n
3
−
n
2
+
n
n
3
+
n
2
−
n
−
1
|
=
|
n
3
−
n
2
+
n
−
(
n
3
+
n
2
−
n
)
n
3
+
n
2
−
n
|
=
|
2
(
n
−
n
2
)
n
3
+
n
2
−
n
|
=
=
n
2
>
n
2
(
n
2
−
n
)
n
3
+
n
2
−
n
<
2
n
2
n
3
+
n
2
−
n
<
n
2
−
n
>
0
2
n
2
n
3
=
2
n
<
n
>
N
2
N
Let
N
=
2
ε
,
ε
>
0
|
n
3
−
n
2
+
n
n
3
+
n
2
−
n
−
1
|
<
2
2
ε
=
ε
⟹
∀
ε
>
0
:
∃
N
:
∀
n
>
N
,
n
∈
N
:
|
n
3
−
n
2
+
n
n
3
+
n
2
−
n
−
1
|
<
ε
⟺
lim
n
→
∞
a
n
=
1
3
Prove:
lim
n
→
∞
n
+
n
2
n
−
7
n
≠
1
7
Proof:
|
n
+
n
2
n
−
7
n
−
1
7
|
=
|
7
(
n
+
n
)
−
(
2
n
−
7
n
)
⏞
7
n
+
7
n
−
2
n
+
7
n
=
5
n
+
14
n
7
(
2
n
−
7
n
)
|
=
5
n
+
14
n
14
n
−
49
n
>
>
5
n
14
n
−
49
n
>
5
n
14
n
=
5
14
⟹
∃
ε
>
0
:
∀
n
∈
N
:
|
n
+
n
2
n
−
7
n
−
1
7
|
≥
ε
⟺
lim
n
→
∞
n
+
n
2
n
−
7
n
≠
1
7
4a
Show that
∀
a
,
b
,
c
∈
R
:
(
|
a
−
b
|
<
7
)
∧
(
|
b
−
c
|
<
48
)
⟹
|
a
−
c
|
<
55
Solution:
|
a
−
c
|
=
|
a
−
b
+
b
−
c
|
≤
|
a
−
b
|
⏟
<
7
+
|
b
−
c
|
<
7
+
|
b
−
c
|
⏟
<
48
<
7
+
48
=
55
|
a
−
c
|
<
55
4b
Show that
∀
a
,
b
,
c
,
ϵ
,
ζ
∈
R
,
ϵ
>
0
,
ζ
>
0
:
(
|
a
−
b
|
<
ϵ
)
∧
(
|
b
−
c
|
<
ζ
)
⟹
|
a
−
c
|
<
ϵ
+
ζ
Solution:
|
a
−
c
|
=
|
a
−
b
+
b
−
c
|
≤
|
a
−
b
|
⏟
<
ϵ
+
|
b
−
c
|
<
ϵ
+
|
b
−
c
|
⏟
<
ζ
<
ϵ
+
ζ
|
a
−
c
|
<
ϵ
+
ζ
Given:
lim
n
→
∞
a
n
=
L
⟺
∀
ε
>
0
∃
N
∈
N
:
∀
n
∈
N
,
n
>
N
:
|
a
n
−
L
|
<
ε
5a
Show that definition
(
1
)
lim
n
→
∞
a
n
=
L
1
⟺
∀
ε
>
0
∃
N
∈
N
:
∀
n
∈
N
,
n
>
N
:
|
a
n
−
L
1
|
<
ε
and definition
(
2
)
lim
n
→
∞
a
n
=
L
2
⟺
∀
ε
>
0
∃
N
∈
N
:
∀
n
∈
N
,
n
≥
N
:
|
a
n
−
L
2
|
<
ε
are equivalent and
L
1
=
L
2
Solution:
Let the definition
(
1
)
be true
Let
lim
n
→
∞
a
n
=
L
1
Then
∀
ε
>
0
∃
N
1
∈
N
:
∀
n
∈
N
,
n
>
N
1
:
|
a
n
−
L
1
|
<
ε
Let
N
2
=
N
1
+
1
n
>
N
1
⟺
n
>
N
2
−
1
{
n
=
N
2
:
n
=
N
2
>
N
2
−
1
n
>
N
2
:
n
>
N
2
>
N
2
−
1
⟹
n
>
N
1
⟺
n
≥
N
2
(
∀
ε
>
0
∃
N
1
∈
N
:
∀
n
∈
N
,
n
>
N
1
:
|
a
n
−
L
1
|
<
ε
)
⟹
(
∀
ε
>
0
∃
N
2
∈
N
:
∀
n
∈
N
,
n
≥
N
2
:
|
a
n
−
L
1
|
<
ε
)
⟹
(
1
)
⟹
(
2
)
[
1
]
Now let the definition
(
2
)
be true
Let
lim
n
→
∞
a
n
=
L
2
Then
∀
ε
>
0
∃
N
1
∈
N
:
∀
n
∈
N
,
n
≥
N
1
:
|
a
n
−
L
2
|
<
ε
Let
N
2
=
N
1
−
1
n
≥
N
1
⟺
n
≥
N
2
+
1
>
N
2
⟹
n
≥
N
1
⟺
n
>
N
2
(
∀
ε
>
0
∃
N
1
∈
N
:
∀
n
∈
N
,
n
≥
N
1
:
|
a
n
−
L
2
|
<
ε
)
⟹
(
∀
ε
>
0
∃
N
2
∈
N
:
∀
n
∈
N
,
n
>
N
2
:
|
a
n
−
L
1
|
<
ε
)
⟹
(
2
)
⟹
(
1
)
[
2
]
[
1
]
and
[
2
]
⟹
(
1
)
≡
(
2
)
Let
L
1
≠
L
2
Then
ζ
=
|
L
1
−
L
2
|
>
0
,
Let
ε
=
ζ
4
|
L
1
−
L
2
|
≤
|
L
1
−
a
n
|
+
|
a
n
−
L
2
|
<
2
ε
=
ζ
2
⟹
ζ
<
ζ
2
−
Contradiction!
⟹
L
1
=
L
2
5b
Show that definition
(
1
)
lim
n
→
∞
a
n
=
L
⟺
∀
ε
>
0
∃
N
∈
N
:
∀
n
∈
N
,
n
>
N
:
|
a
n
−
L
|
<
ε
and definition
(
2
)
lim
n
→
∞
a
n
=
L
⟺
∀
ε
>
0
∃
N
∈
N
:
∀
n
∈
N
,
n
>
N
:
|
a
n
−
L
|
≤
ε
are equivalent
Solution:
One direction is obvious, as
∀
r
∈
R
:
r
<
ε
⟹
r
≤
ε
⟹
(
1
)
⟹
(
2
)
[
1
]
Now let the definition
(
2
)
be true
Let
lim
n
→
∞
a
n
=
L
Then
∀
ε
>
0
∃
N
∈
N
:
∀
n
∈
N
,
n
≥
N
:
|
a
n
−
L
|
≤
ε
Let
ε
1
=
ε
2
,
ε
>
0
∀
r
∈
R
:
r
≤
ε
1
⟹
r
≤
ε
2
<
ε
(
∀
ε
1
>
0
∃
N
1
∈
N
:
∀
n
∈
N
,
n
>
N
:
|
a
n
|
≤
ε
1
)
⟹
(
∀
ε
>
0
∃
N
2
∈
N
:
∀
n
∈
N
,
n
>
N
2
:
|
a
n
−
L
1
|
<
ε
)
⟹
(
2
)
⟹
(
1
)
[
2
]
[
1
]
and
[
2
]
⟹
(
1
)
≡
(
2
)
5c
Show that definition
(
1
)
lim
n
→
∞
a
n
=
L
⟺
∀
ε
>
0
∃
N
∈
N
:
∀
n
∈
N
,
n
>
N
:
|
a
n
−
L
|
<
ε
and definition
(
2
)
lim
n
→
∞
a
n
=
L
⟺
∀
ε
≥
0
∃
N
∈
N
:
∀
n
∈
N
,
n
>
N
:
|
a
n
−
L
|
<
ε
are not equivalent
Solution:
1.
∀
r
∈
R
:
|
r
|
≥
0
ε
=
0
⟹
|
a
n
−
L
|
≮
ε
=
0
2.
Let us replace
|
a
n
−
L
|
<
ε
with
|
a
n
−
L
|
≤
ε
as per 5b
This wouldn’t help either, for example:
(
1
)
⟹
lim
n
→
∞
1
n
=
0
But
∀
n
∈
N
:
|
1
n
|
≰
0
⟹
(
2
)
⟹
⧸
⟹
lim
n
→
∞
1
n
=
0
⟹
(
1
)
≢
(
2
)
6
Given:
lim
n
→
∞
a
n
=
π
b
n
=
{
2
a
n
n
=
314
a
n
otherwise
Prove:
lim
n
→
∞
b
n
=
π
Proof:
lim
n
→
∞
a
n
=
π
⟺
∀
ε
>
0
:
∃
N
:
∀
n
∈
N
,
n
>
N
:
|
a
n
−
π
|
<
ε
Let
N
1
=
m
a
x
(
N
,
314
)
∀
n
∈
N
,
n
>
N
1
:
b
n
=
a
n
∀
ε
>
0
:
∃
N
1
:
∀
n
∈
N
,
n
>
N
1
:
|
a
n
−
π
|
<
ε
⟹
∀
ε
>
0
:
∃
N
1
:
∀
n
∈
N
,
n
>
N
1
:
|
b
n
−
π
|
<
ε
⟺
lim
n
→
∞
b
n
=
π