Infi-1 3

1a

an=1n+27Prove: limnan=0Proof:|1n+270|=1n+27<n>N1N+27Let N=1ε,ε>0|1n+270|<n>N11ε+27<11ε=εε>0:N:n>N,nN:|1n+270|<εlimnan=0

1b

an=n+3n+32Prove: limnan=1Proof:|n+3n+321|=|n+3(n+32)n+32|=29n+32<n>N29N+32Let N=29ε,ε>0|n+3n+321|<n>N2929ε+32<2929ε=εε>0:N:n>N,nN:|n+3n+321|<εlimnan=1

1c

an=4n225n216Prove: limnan=4Proof:|4n225n2164|=|4n2254(n216)n216|=39n216<n>N39n216Let N=39ε+16|4n225n2164|<n>N3939ε+16216=3939ε+1616=3939ε=εε>0:N:n>N,nN:|4n225n2164|<εlimnan=4

2a

an=(1)nn8Find limnanSolution:Let’s assume limnan=0|(1)nn80|=1n8<n>N1N8Let N=1ε8|(1)nn80|<11ε88=11ε=εε>0:N:n>N,nN:|(1)nn80|<εlimnan=0

2b

an=1+(1)n2n+24Find limnanSolution:Let’s assume limnan=0|1+(1)n2n+240|=1+(1)n2n+2422n+24<n>N22N+24Let N=1+log2(1ε),ε>0|1+(1)n2n+240|<n>N221+log2(1/ε)+24=221ε+24<221ε=εε>0:N:n>N,nN:|1+(1)n2n+240|<εlimnan=0

2c

an=n3n2+nn3+n2nFind limnanSolution:Let’s assume limnan=1|n3n2+nn3+n2n1|=|n3n2+n(n3+n2n)n3+n2n|=|2(nn2)n3+n2n|==n2>n2(n2n)n3+n2n<2n2n3+n2n<n2n>02n2n3=2n<n>N2NLet N=2ε,ε>0|n3n2+nn3+n2n1|<22ε=εε>0:N:n>N,nN:|n3n2+nn3+n2n1|<εlimnan=1

3

Prove: limnn+n2n7n17Proof:|n+n2n7n17|=|7(n+n)(2n7n)7n+7n2n+7n=5n+14n7(2n7n)|=5n+14n14n49n>>5n14n49n>5n14n=514ε>0:nN:|n+n2n7n17|εlimnn+n2n7n17

4a

Show that a,b,cR:(|ab|<7)(|bc|<48)|ac|<55Solution:|ac|=|ab+bc||ab|<7+|bc|<7+|bc|<48<7+48=55|ac|<55

4b

Show that a,b,c,ϵ,ζR,ϵ>0,ζ>0:(|ab|<ϵ)(|bc|<ζ)|ac|<ϵ+ζSolution:|ac|=|ab+bc||ab|<ϵ+|bc|<ϵ+|bc|<ζ<ϵ+ζ|ac|<ϵ+ζ
Given: limnan=Lε>0NN:nN,n>N:|anL|<ε

5a

Show that definition (1)limnan=L1ε>0NN:nN,n>N:|anL1|<εand definition (2)limnan=L2ε>0NN:nN,nN:|anL2|<εare equivalent and L1=L2Solution:Let the definition (1) be trueLet limnan=L1Then ε>0N1N:nN,n>N1:|anL1|<εLet N2=N1+1n>N1n>N21{n=N2:n=N2>N21n>N2:n>N2>N21n>N1nN2(ε>0N1N:nN,n>N1:|anL1|<ε)(ε>0N2N:nN,nN2:|anL1|<ε)(1)(2)[1]Now let the definition (2) be trueLet limnan=L2Then ε>0N1N:nN,nN1:|anL2|<εLet N2=N11nN1nN2+1>N2nN1n>N2(ε>0N1N:nN,nN1:|anL2|<ε)(ε>0N2N:nN,n>N2:|anL1|<ε)(2)(1)[2][1] and [2](1)(2)Let L1L2Then ζ=|L1L2|>0, Let ε=ζ4|L1L2||L1an|+|anL2|<2ε=ζ2ζ<ζ2Contradiction!L1=L2

5b

Show that definition (1)limnan=Lε>0NN:nN,n>N:|anL|<εand definition (2)limnan=Lε>0NN:nN,n>N:|anL|εare equivalentSolution:One direction is obvious, as rR:r<εrε(1)(2)[1]Now let the definition (2) be trueLet limnan=LThen ε>0NN:nN,nN:|anL|εLet ε1=ε2,ε>0rR:rε1rε2<ε(ε1>0N1N:nN,n>N:|an|ε1)(ε>0N2N:nN,n>N2:|anL1|<ε)(2)(1)[2][1] and [2](1)(2)

5c

Show that definition (1)limnan=Lε>0NN:nN,n>N:|anL|<εand definition (2)limnan=Lε0NN:nN,n>N:|anL|<εare not equivalentSolution:1.rR:|r|0ε=0|anL|ε=02.Let us replace |anL|<ε with |anL|ε as per 5bThis wouldn’t help either, for example:(1)limn1n=0But nN:|1n|0(2)limn1n=0(1)(2)

6

Given: limnan=πbn={2ann=314anotherwiseProve: limnbn=πProof:limnan=πε>0:N:nN,n>N:|anπ|<εLet N1=max(N,314)nN,n>N1:bn=anε>0:N1:nN,n>N1:|anπ|<εε>0:N1:nN,n>N1:|bnπ|<εlimnbn=π