Infi-1 4

1

Given: anLR,xLProve: N:n>N:anxProof:limnan=Lε>0:N:n>N:|anL|<εxL|xL|>0Let ε=|xL|N:n>N:|anL|<εLet x>L:|anL|<xL2Lx<an<xan<xanxLet x<L:|anL|<Lxx<an<2Lxan>xanxN:n>N:anx

2a

Prove: limnan=L>0limnann=1Proof:Let ε=L4|anL|<L43L4<an<5L43L4n1<ann<5L4n1By the "Sandwich" theorem: limnann=1

2b

Prove or disprove: If an does not converge to L>0,ann still converges to 1Disproof:an=(1)nlimnanann=(1)nn=1limnann=11

3a

an=2n5+16n2+48n524n43limnan=limnn52+16n3+4n58n524n43=limn2+16n30+4n50824n03n50=28=14limnan=14

3b

bn=n3n2+nn+12n3+12n5limnbn=limnn311n+1n21n5+1n32n3+12n5=limn11n0+1n201n50+1n302+121n505n30=12limnbn=12

3c

cn=n+2n+1n=(n+2n+1)(n+2+(n+1))n(n+2+n+1)==n+2(n+1)n(n+2+n+1)=1n(n+2+n+1)==1n2+2n+n2+n=1n(1+2n+1+1n)limncn=limn1n(1+2n+1+1n)=limn1n011+2n1+1+1n112=0limncn=0

3d

dn=n+23n+13n3==(n+23n+13)((n+2)23+(n+2)(n+1)3+(n+1)23)n3((n+2)23+(n+2)(n+1)3+(n+1)23)==1n3+4n2+2n3+n3+3n2+2n3+n3+2n2+n3==1n11+4n+2n23+1+3n+2n23+1+2n+1n23limndn=limn1nlimn11+4n0+2n2031+1+3n0+2n2031+1+2n0+1n2031==013=0limndn=0

3e

pn=2n+3n++10nnLet sn=2n+3n++10nlimnpn=limnsn+1sn2n+1sn=21+(32)n++(102)n09n+1sn=9(29)n0++1+(109)n010n+1sn=10(210)n0+(310)n0+110sn+1sn=2n+1sn0+3n+1sn0++10n+1sn10limnsn+1sn=10limnpn=10

3f

qn=sin(cos(2n2+1))2n+112n+1qn12n+1|12n+10|=|12n+10|=12n+1<12n<n>N12NLet N=12ε2,ε>0|12n+10|=|12n+10|<122ε2=11ε=εε>0:N:n>N:|12n+10|=|12n+10|<ε12n+10qn12n+10limnqn=0

4a

Prove by definition: limnln(n)=Proof:Definition: M>0:N:n>N:an>MLet N=eM,M>0ln(n)>n>Nln(N)=ln(eM)=MM>0:N:n>N:ln(n)>Mlimnln(n)=

4b

Given: an,mNProve by definition: limnanm=Proof:anM>0:N:n>N:an>MLet M1=Mman>n>NM1anm>n>NM1m=Mmm=MM>0:N:n>N:anm>Mlimnanm=

4c

Given: an,bnProve be definition: limnan+bn=Proof:anM>0:N1:n>N1:an>M2bnM>0:N2:n>N2:bn>M2M>0:N=max(N1,N2):n>N:an+bn>Mlimnan+bn=
an,bn

5a

Example of an+bn:an=2n2bn=n2an+bn=n2

5b

Example of an+bn:an=n2bn=2n2an+bn=n2

5c

Example of an+bn0:an=n2bn=n2an+bn=00

5d

Example of an+bn10:an=n2+10bn=n2an+bn=1010

5e

Example of limnan+bnan={nn is oddn2n is evenbn={n2n is oddnn is evenan+bn={nn2n is oddn2nn is evenlimnan+bn