Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 4
1
Given:
a
n
→
L
∈
R
,
x
≠
L
Prove:
∃
N
:
∀
n
>
N
:
a
n
≠
x
Proof:
lim
n
→
∞
a
n
=
L
⟺
∀
ε
>
0
:
∃
N
:
∀
n
>
N
:
|
a
n
−
L
|
<
ε
x
≠
L
⟹
|
x
−
L
|
>
0
Let
ε
=
|
x
−
L
|
∃
N
:
∀
n
>
N
:
|
a
n
−
L
|
<
ε
Let
x
>
L
:
|
a
n
−
L
|
<
x
−
L
⟺
2
L
−
x
<
a
n
<
x
⟹
a
n
<
x
⟹
a
n
≠
x
Let
x
<
L
:
|
a
n
−
L
|
<
L
−
x
⟺
x
<
a
n
<
2
L
−
x
⟹
a
n
>
x
⟹
a
n
≠
x
⟹
∃
N
:
∀
n
>
N
:
a
n
≠
x
2a
Prove:
lim
n
→
∞
a
n
=
L
>
0
⟹
lim
n
→
∞
a
n
n
=
1
Proof:
Let
ε
=
L
4
|
a
n
−
L
|
<
L
4
⟺
3
L
4
<
a
n
<
5
L
4
⟺
3
L
4
n
⏟
→
1
<
a
n
n
<
5
L
4
n
⏟
→
1
By the "Sandwich" theorem:
lim
n
→
∞
a
n
n
=
1
2b
Prove or disprove: If
a
n
does not converge to
L
>
0
,
a
n
n
still converges to 1
Disproof:
a
n
=
(
−
1
)
n
⟹
∄
lim
n
→
∞
a
n
a
n
n
=
(
−
1
)
n
n
=
−
1
⟹
lim
n
→
∞
a
n
n
=
−
1
≠
1
3a
a
n
=
2
n
5
+
16
n
2
+
4
8
n
5
−
24
n
4
−
3
lim
n
→
∞
a
n
=
lim
n
→
∞
n
5
2
+
16
n
3
+
4
n
5
8
n
5
−
24
n
4
−
3
=
lim
n
→
∞
2
+
16
n
3
⏞
→
0
+
4
n
5
⏞
→
0
8
−
24
n
⏟
→
0
−
3
n
5
⏟
→
0
=
2
8
=
1
4
lim
n
→
∞
a
n
=
1
4
3b
b
n
=
n
3
−
n
2
+
n
−
n
+
1
2
n
3
+
12
n
−
5
lim
n
→
∞
b
n
=
lim
n
→
∞
n
3
1
−
1
n
+
1
n
2
−
1
n
5
+
1
n
3
2
n
3
+
12
n
−
5
=
lim
n
→
∞
1
−
1
n
⏞
→
0
+
1
n
2
⏞
→
0
−
1
n
5
⏞
→
0
+
1
n
3
⏞
→
0
2
+
12
1
n
5
⏟
→
0
−
5
n
3
⏟
→
0
=
1
2
lim
n
→
∞
b
n
=
1
2
3c
c
n
=
n
+
2
−
n
+
1
n
=
(
n
+
2
−
n
+
1
)
(
n
+
2
+
(
n
+
1
)
)
n
(
n
+
2
+
n
+
1
)
=
=
n
+
2
−
(
n
+
1
)
n
(
n
+
2
+
n
+
1
)
=
1
n
(
n
+
2
+
n
+
1
)
=
=
1
n
2
+
2
n
+
n
2
+
n
=
1
n
(
1
+
2
n
+
1
+
1
n
)
lim
n
→
∞
c
n
=
lim
n
→
∞
1
n
(
1
+
2
n
+
1
+
1
n
)
=
lim
n
→
∞
1
n
⏟
→
0
⋅
1
1
+
2
n
⏟
→
1
+
1
+
1
n
⏟
→
1
⏟
→
1
2
=
0
lim
n
→
∞
c
n
=
0
3d
d
n
=
n
+
2
3
−
n
+
1
3
n
3
=
=
(
n
+
2
3
−
n
+
1
3
)
(
(
n
+
2
)
2
3
+
(
n
+
2
)
(
n
+
1
)
3
+
(
n
+
1
)
2
3
)
n
3
(
(
n
+
2
)
2
3
+
(
n
+
2
)
(
n
+
1
)
3
+
(
n
+
1
)
2
3
)
=
=
1
n
3
+
4
n
2
+
2
n
3
+
n
3
+
3
n
2
+
2
n
3
+
n
3
+
2
n
2
+
n
3
=
=
1
n
⋅
1
1
+
4
n
+
2
n
2
3
+
1
+
3
n
+
2
n
2
3
+
1
+
2
n
+
1
n
2
3
lim
n
→
∞
d
n
=
lim
n
→
∞
1
n
⋅
lim
n
→
∞
1
1
+
4
n
⏟
→
0
+
2
n
2
⏟
→
0
3
⏟
→
1
+
1
+
3
n
⏟
→
0
+
2
n
2
⏟
→
0
3
⏟
→
1
+
1
+
2
n
⏟
→
0
+
1
n
2
⏟
→
0
3
⏟
→
1
=
=
0
⋅
1
3
=
0
lim
n
→
∞
d
n
=
0
3e
p
n
=
2
n
+
3
n
+
⋯
+
10
n
n
Let
s
n
=
2
n
+
3
n
+
⋯
+
10
n
lim
n
→
∞
p
n
=
lim
n
→
∞
s
n
+
1
s
n
2
n
+
1
s
n
=
2
1
+
(
3
2
)
n
⏟
→
∞
+
⋯
+
(
10
2
)
n
⏟
→
∞
→
0
…
9
n
+
1
s
n
=
9
(
2
9
)
n
⏟
→
0
+
⋯
+
1
+
(
10
9
)
n
⏟
→
∞
→
0
10
n
+
1
s
n
=
10
(
2
10
)
n
⏟
→
0
+
(
3
10
)
n
⏟
→
0
⋯
+
1
→
10
⟹
s
n
+
1
s
n
=
2
n
+
1
s
n
⏟
→
0
+
3
n
+
1
s
n
⏟
→
0
+
⋯
+
10
n
+
1
s
n
⏟
→
10
⟹
lim
n
→
∞
s
n
+
1
s
n
=
10
⟹
lim
n
→
∞
p
n
=
10
3f
q
n
=
sin
(
cos
(
2
n
2
+
1
)
)
2
n
+
1
−
1
2
n
+
1
≤
q
n
≤
1
2
n
+
1
|
−
1
2
n
+
1
−
0
|
=
|
1
2
n
+
1
−
0
|
=
1
2
n
+
1
<
1
2
n
<
n
>
N
1
2
N
Let
N
=
1
2
ε
2
,
ε
>
0
|
−
1
2
n
+
1
−
0
|
=
|
1
2
n
+
1
−
0
|
<
1
2
2
ε
2
=
1
1
ε
=
ε
⟹
∀
ε
>
0
:
∃
N
:
∀
n
>
N
:
|
−
1
2
n
+
1
−
0
|
=
|
1
2
n
+
1
−
0
|
<
ε
⟹
−
1
2
n
+
1
⏟
→
0
≤
q
n
≤
1
2
n
+
1
⏟
→
0
⟹
lim
n
→
∞
q
n
=
0
4a
Prove by definition:
lim
n
→
∞
ln
(
n
)
=
∞
Proof:
Definition:
∀
M
>
0
:
∃
N
:
∀
n
>
N
:
a
n
>
M
Let
N
=
e
M
,
M
>
0
ln
(
n
)
>
n
>
N
ln
(
N
)
=
ln
(
e
M
)
=
M
⟹
∀
M
>
0
:
∃
N
:
∀
n
>
N
:
ln
(
n
)
>
M
⟺
lim
n
→
∞
ln
(
n
)
=
∞
4b
Given:
a
n
→
∞
,
m
∈
N
Prove by definition:
lim
n
→
∞
a
n
m
=
∞
Proof:
a
n
→
∞
⟺
∀
M
>
0
:
∃
N
:
∀
n
>
N
:
a
n
>
M
Let
M
1
=
M
m
a
n
>
n
>
N
M
1
⟹
a
n
m
>
n
>
N
M
1
m
=
M
m
m
=
M
⟹
∀
M
>
0
:
∃
N
:
∀
n
>
N
:
a
n
m
>
M
⟺
lim
n
→
∞
a
n
m
=
∞
4c
Given:
a
n
→
∞
,
b
n
→
∞
Prove be definition:
lim
n
→
∞
a
n
+
b
n
=
∞
Proof:
a
n
→
∞
⟺
∀
M
>
0
:
∃
N
1
:
∀
n
>
N
1
:
a
n
>
M
2
b
n
→
∞
⟺
∀
M
>
0
:
∃
N
2
:
∀
n
>
N
2
:
b
n
>
M
2
⟹
∀
M
>
0
:
∃
N
=
m
a
x
(
N
1
,
N
2
)
:
∀
n
>
N
:
a
n
+
b
n
>
M
⟺
lim
n
→
∞
a
n
+
b
n
=
∞
a
n
→
∞
,
b
n
→
−
∞
5a
Example of
a
n
+
b
n
→
∞
:
a
n
=
2
n
2
→
∞
b
n
=
−
n
2
→
−
∞
a
n
+
b
n
=
n
2
→
∞
5b
Example of
a
n
+
b
n
→
−
∞
:
a
n
=
n
2
→
∞
b
n
=
−
2
n
2
→
−
∞
a
n
+
b
n
=
−
n
2
→
−
∞
5c
Example of
a
n
+
b
n
→
0
:
a
n
=
n
2
→
∞
b
n
=
−
n
2
→
−
∞
a
n
+
b
n
=
0
→
0
5d
Example of
a
n
+
b
n
→
10
:
a
n
=
n
2
+
10
→
∞
b
n
=
−
n
2
→
−
∞
a
n
+
b
n
=
10
→
10
5e
Example of
∄
lim
n
→
∞
a
n
+
b
n
a
n
=
{
n
n
is odd
n
2
n
is even
→
∞
b
n
=
{
−
n
2
n
is odd
−
n
n
is even
→
−
∞
a
n
+
b
n
=
{
n
−
n
2
⏞
→
−
∞
n
is odd
n
2
−
n
⏟
→
∞
n
is even
⟹
∄
lim
n
→
∞
a
n
+
b
n