Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 5
1a
a
>
0
,
b
>
1
Prove:
b
n
n
a
→
∞
Proof:
Let
x
n
=
b
n
n
a
|
x
n
+
1
x
n
|
=
b
n
+
1
⋅
n
a
b
n
⋅
(
n
+
1
)
a
=
b
⋅
(
n
n
+
1
)
a
=
b
⋅
(
1
1
+
1
n
⏟
→
0
)
a
⏟
→
1
⟹
lim
n
→
∞
|
x
n
+
1
x
n
|
=
b
>
1
⟹
lim
n
→
∞
x
n
=
∞
1b
Prove:
n
ln
n
→
∞
Proof:
n
ln
n
=
n
2
ln
(
n
)
n
∈
R
⟹
n
≥
ln
(
n
)
⟹
n
2
ln
(
n
)
=
n
2
⋅
n
ln
(
n
)
≥
n
2
→
∞
⟹
lim
n
→
∞
n
ln
n
=
∞
1c
a
>
0
Prove:
n
a
ln
n
→
∞
Proof:
ln
n
=
ln
(
n
2
a
/
2
a
)
=
2
a
ln
(
n
a
)
n
a
ln
n
=
n
a
2
a
⋅
n
a
ln
(
n
a
)
n
a
∈
R
⟹
n
a
≥
ln
(
n
a
)
⟹
n
a
2
a
⋅
n
a
ln
(
n
a
)
≥
a
n
a
2
→
∞
⟹
lim
n
→
∞
n
a
ln
n
=
∞
2a
a
n
>
0
∃
N
:
∀
n
≥
N
:
a
n
+
1
>
2
a
n
Prove by definition:
a
n
→
∞
Proof:
Let
N
1
>
N
∀
n
>
N
1
:
a
n
≥
2
a
N
1
>
4
a
N
1
−
1
>
8
a
N
1
−
2
>
⋯
>
2
N
1
−
N
+
1
a
N
Let
M
=
2
N
1
−
N
+
1
a
N
a
N
>
0
⟹
M
>
0
2
N
1
=
M
⋅
2
N
−
1
a
N
⟹
N
1
=
log
2
(
M
⋅
2
N
−
1
a
N
)
Let
N
1
=
m
a
x
(
log
2
(
M
⋅
2
N
−
1
a
N
)
,
N
+
1
)
⟹
∀
M
>
0
:
∃
N
1
>
N
:
∀
n
>
N
1
:
a
n
>
M
⟹
lim
n
→
∞
a
n
=
∞
2b
a
n
>
0
Prove by definition:
a
n
+
1
a
n
→
∞
⟹
a
n
→
∞
Proof:
a
n
+
1
a
n
→
∞
⟹
∀
M
>
0
:
∃
N
1
:
∀
n
>
N
1
:
a
n
+
1
a
n
>
M
⟹
a
n
+
1
>
M
a
n
Let
M
=
2
Let
N
=
N
1
+
1
As proved in 2a,
∃
N
:
∀
n
≥
N
:
a
n
+
1
>
2
a
n
⟹
a
n
→
∞
⟹
lim
n
→
∞
a
n
=
∞
2c
a
n
>
0
Prove:
a
n
n
→
∞
⟹
a
n
→
∞
Proof:
a
n
n
→
∞
⟹
∀
M
>
0
:
∃
N
:
∀
n
>
N
:
a
n
n
>
M
⟹
a
n
>
M
n
Let
M
>
1
⟹
M
n
→
∞
⟹
a
n
→
∞
3a
a
n
=
n
5
−
n
3
+
n
−
1
Find:
lim
n
→
∞
a
n
Solution:
lim
n
→
∞
(
n
5
−
n
3
+
n
−
1
)
=
n
5
⏟
→
∞
⋅
(
1
−
1
n
2
⏟
→
0
+
1
n
4
⏟
→
0
−
1
n
5
⏟
→
0
)
⏟
→
1
=
∞
lim
n
→
∞
a
n
=
∞
3b
b
n
=
n
log
(
n
)
−
2
n
n
Find:
lim
n
→
∞
b
n
Solution:
−
b
n
=
2
n
n
−
n
log
(
n
)
≥
2
n
n
−
n
log
(
n
)
=
n
⏟
→
∞
(
2
n
−
log
(
n
)
)
⏟
>
0
→
∞
⟹
b
n
→
−
∞
3c
c
n
=
n
+
16
−
n
+
9
Find:
lim
n
→
∞
c
n
Solution:
c
n
=
(
n
+
16
−
n
+
9
)
(
n
+
16
+
n
9
)
n
+
16
+
n
+
9
=
7
n
+
16
+
n
+
9
7
2
2
n
⏟
→
0
≤
n
>
16
c
n
≤
7
2
n
⏟
→
0
⟹
c
n
→
0
3d
d
n
=
log
(
n
2
+
25
)
n
−
4
Find:
lim
n
→
∞
d
n
Solution:
0
≤
d
n
≤
n
>
5
log
(
2
n
2
)
n
−
4
=
log
(
2
n
2
)
n
=
log
(
2
)
+
2
log
(
n
)
n
=
log
(
2
)
n
⏟
→
0
+
2
ln
(
10
)
⋅
ln
n
n
⏟
→
0
⏟
→
0
⟹
d
n
→
0
3e
p
n
=
(
log
(
n
+
4
)
)
81
n
16
+
n
−
1
Find:
lim
n
→
∞
p
n
Solution:
0
≤
p
n
≤
n
−
1
≥
0
(
log
(
n
+
4
)
)
81
n
16
≤
n
>
3
(
log
(
n
2
)
)
81
n
16
=
(
2
ln
(
10
)
)
81
⋅
(
ln
n
)
81
n
16
=
=
(
2
ln
(
10
)
)
81
⋅
(
ln
n
n
16
/
81
⏟
→
0
)
81
⏟
→
0
⏟
→
0
⟹
p
n
→
0
4
a
n
→
0
,
b
n
→
0
4a
Find
a
n
,
b
n
:
a
n
b
n
→
∞
Solution:
a
n
=
1
n
b
n
=
1
n
2
a
n
b
n
=
n
2
n
=
n
→
∞
4b
Find
a
n
,
b
n
:
a
n
b
n
→
15
Solution:
a
n
=
15
n
b
n
=
1
n
a
n
b
n
=
15
n
n
=
15
→
15
4c
Find
a
n
,
b
n
:
a
n
b
n
→
0
Solution:
a
n
=
1
n
2
b
n
=
1
n
a
n
b
n
=
n
n
2
=
1
n
→
0
4d
Find
a
n
,
b
n
:
a
n
b
n
→
−
∞
Solution:
a
n
=
−
1
n
b
n
=
1
n
2
a
n
b
n
=
−
n
2
n
=
−
n
→
−
∞
4e
Find
a
n
,
b
n
:
∄
lim
n
→
∞
a
n
b
n
Solution:
a
n
=
(
−
1
)
n
n
b
n
=
1
n
a
n
b
n
=
(
−
1
)
n
⟹
∄
lim
n
→
∞
a
n
b
n
5a
C
>
0
Prove by definition:
a
n
→
∞
⟹
a
n
C
→
∞
Proof:
a
n
→
∞
⟹
∀
M
>
0
:
∃
N
:
∀
n
>
N
:
a
n
>
M
⟹
a
n
C
>
M
C
Let
M
1
=
M
C
⟹
∀
M
1
>
0
:
∃
N
:
∀
n
>
N
:
a
n
C
>
M
1
⟹
lim
n
→
∞
a
n
C
=
∞
5b
Give an example:
a
n
→
∞
,
c
n
>
0
,
a
n
c
n
↛
∞
Solution:
a
n
=
e
n
c
n
=
1
n
a
n
c
n
=
(
e
n
)
1
/
n
=
e
n
/
n
=
e
1
=
e
→
e
⟹
a
n
c
n
↛
∞
6a
a
n
→
0
,
b
n
→
∞
Prove:
a
n
b
n
→
0
Proof:
b
n
→
∞
⟹
∀
M
>
0
:
∃
N
:
∀
n
>
N
:
b
n
>
M
⟹
0
<
1
b
n
<
1
M
Let
ε
=
1
M
∀
ε
>
0
:
∃
N
:
∀
n
>
N
:
0
<
1
b
n
<
ε
=
1
M
⟹
1
b
n
→
0
lim
n
→
∞
a
n
b
n
=
lim
n
→
∞
a
n
⏟
→
0
⋅
1
b
n
⏟
→
0
=
0
6b
a
n
→
∞
,
b
n
>
0
,
b
n
→
0
Prove:
a
n
b
n
→
∞
Proof:
b
n
>
0
,
b
n
→
0
⟹
∀
ε
>
0
:
∃
N
:
∀
n
>
N
:
b
n
<
ε
⟹
1
b
n
>
1
ε
Let
M
=
1
ε
∀
M
>
0
:
∃
N
:
∀
n
>
N
:
1
b
n
>
1
ε
=
M
⟹
1
b
n
→
∞
lim
n
→
∞
a
n
b
n
=
lim
n
→
∞
a
n
⏟
→
∞
⋅
1
b
n
⏟
→
∞
=
∞
6c
a
n
→
0
,
b
n
→
∞
Prove:
a
n
b
n
→
0
Proof:
a
n
→
0
⟹
∀
ε
>
0
:
∃
N
1
:
∀
n
>
N
1
:
|
a
n
|
<
ε
Let
ε
=
1
b
n
→
∞
⟹
∀
M
>
0
:
∃
N
2
:
∀
n
>
N
2
:
b
n
>
M
Let
M
=
1
Let
N
=
m
a
x
(
N
1
,
N
2
)
∀
n
>
N
:
a
n
<
1
,
b
n
>
1
⟹
|
a
n
|
b
n
≤
|
a
n
|
⟹
0
≤
|
a
n
b
n
|
=
|
a
n
|
b
n
≤
|
a
n
|
⏟
→
0
⟹
|
a
n
b
n
|
→
0
⟹
a
n
b
n
→
0