Infi-1 5

1a

a>0,b>1Prove: bnnaProof:Let xn=bnna|xn+1xn|=bn+1nabn(n+1)a=b(nn+1)a=b(11+1n0)a1limn|xn+1xn|=b>1limnxn=

1b

Prove: nlnnProof:nlnn=n2ln(n)nRnln(n)n2ln(n)=n2nln(n)n2limnnlnn=

1c

a>0Prove: nalnnProof:lnn=ln(n2a/2a)=2aln(na)nalnn=na2analn(na)naRnaln(na)na2analn(na)ana2limnnalnn=

2a

an>0N:nN:an+1>2anProve by definition: anProof:Let N1>Nn>N1:an2aN1>4aN11>8aN12>>2N1N+1aNLet M=2N1N+1aNaN>0M>02N1=M2N1aNN1=log2(M2N1aN)Let N1=max(log2(M2N1aN),N+1)M>0:N1>N:n>N1:an>Mlimnan=

2b

an>0Prove by definition: an+1ananProof:an+1anM>0:N1:n>N1:an+1an>Man+1>ManLet M=2Let N=N1+1As proved in 2a, N:nN:an+1>2ananlimnan=

2c

an>0Prove: annanProof:annM>0:N:n>N:ann>Man>MnLet M>1Mnan

3a

an=n5n3+n1Find: limnanSolution:limn(n5n3+n1)=n5(11n20+1n401n50)1=limnan=

3b

bn=nlog(n)2nnFind: limnbnSolution:bn=2nnnlog(n)2nnnlog(n)=n(2nlog(n))>0bn

3c

cn=n+16n+9Find: limncnSolution:cn=(n+16n+9)(n+16+n9)n+16+n+9=7n+16+n+9722n0n>16cn72n0cn0

3d

dn=log(n2+25)n4Find: limndnSolution:0dnn>5log(2n2)n4=log(2n2)n=log(2)+2log(n)n=log(2)n0+2ln(10)lnnn00dn0

3e

pn=(log(n+4))81n16+n1Find: limnpnSolution:0pnn10(log(n+4))81n16n>3(log(n2))81n16=(2ln(10))81(lnn)81n16==(2ln(10))81(lnnn16/810)8100pn0

4

an0,bn0

4a

Find an,bn:anbnSolution:an=1nbn=1n2anbn=n2n=n

4b

Find an,bn:anbn15Solution:an=15nbn=1nanbn=15nn=1515

4c

Find an,bn:anbn0Solution:an=1n2bn=1nanbn=nn2=1n0

4d

Find an,bn:anbnSolution:an=1nbn=1n2anbn=n2n=n

4e

Find an,bn:limnanbnSolution:an=(1)nnbn=1nanbn=(1)nlimnanbn

5a

C>0Prove by definition: ananCProof:anM>0:N:n>N:an>ManC>MCLet M1=MCM1>0:N:n>N:anC>M1limnanC=

5b

Give an example: an,cn>0,ancnSolution:an=encn=1nancn=(en)1/n=en/n=e1=eeancn

6a

an0,bnProve: anbn0Proof:bnM>0:N:n>N:bn>M0<1bn<1MLet ε=1Mε>0:N:n>N:0<1bn<ε=1M1bn0limnanbn=limnan01bn0=0

6b

an,bn>0,bn0Prove: anbnProof:bn>0,bn0ε>0:N:n>N:bn<ε1bn>1εLet M=1εM>0:N:n>N:1bn>1ε=M1bnlimnanbn=limnan1bn=

6c

an0,bnProve: anbn0Proof:an0ε>0:N1:n>N1:|an|<εLet ε=1bnM>0:N2:n>N2:bn>MLet M=1Let N=max(N1,N2)n>N:an<1,bn>1|an|bn|an|0|anbn|=|an|bn|an|0|anbn|0anbn0