Infi-1 6

1a

an=1n+1n+1++13nProve: limnan=L23Proof: an+1an=13n+3+13n+2+13n+11n<33n1n=0anmonotonically decreasing13n13n11n+11n2n+13n1n13n+1n+113n++13n23=2n3n2n+13nanan is lower-bounded by 23limnan=L23

1b

Explain in short why an from 1a does not converge to 0 as per the limit arithmeticsExplanation:As n grows towards infinity, number of terms in the sum is also growing towards infinity,even faster than n does itself, and thus the limit arithmetics do not apply in this case

1c

anL1. Prove or disprove: n:an>xlimnan>x2. Prove or disprove: n:an>xlimnanxDisproof for 1.Let an=1nn:an>0limnan=00n:an>xlimnan>xProof for 2.Let limnan=L<xxL>0an>xanx>0Let ε=xL2N:n>N:|anL|<ε|anL|=|(anx)+(xL)||anx|+|xL|<ε(anx)+(xL)<xL2(anx)>0+xL2>0<0Contradiction!limnanxn:an>xlimnanx

2

an:2,2+2,2+2+2,

2a

Write an in the form or recursive formula:an={2n=12+an1otherwise

2b

Prove an is upper-bounded and monotonically non-decreasing, find limnanProof:Base case. a1=20<2<20<a1<2Induction step. Let 0<an<2an+1=2+an<2+2=4=2an+1<22+an>2>0an+1>0nN:0<an<2(1)an+1an2+anan2+anan2an2an2<01<an<2nN:0<an<21<an<2an+1anan is monotonically non-decreasing(2)(1)(2)limnan=LRLet limnan=LL=limnan+1=limn2+an=2+LL=2+LL2=2+LL2L2=0(L2)(L+1)=0[L=2L=1nN:an>0limnan0L0L=2limnan=2

3

an={1n=13an1otherwiseProve an converges and find limnanProof:Base case. a1=111<31a1<3Induction step. Let 1an<3an+1=3an<33=3an+1<33an31an+11nN:1an<3(1)an+1>an3an>an3an>an2an(an3)<00<an<3n>1N:1an<30<an<3an+1>anan is monotonically increasing(2)(1)(2)limnan=LRLet limnan=LL=limnan+1=limn3an=3LL=3LL2=3L[L=0L=3nN:an1an>12limnan12limn0limnan=3

4

a1>0an+1=aneanFind limnanSolution:Base case. a1>0Induction step. Let an>0an+1=an>0ean>0>0an+1>0nN:an>0an+1>ananean>anean>1an>0nN:an>0an+1>anan is monotonically increasingLet limnan=LRL=limnan+1=anean=LeLL=LeLL(eL1)=0[L=0eL=1L=0an is monotonocally increasinglimnanLa1>0LRlimnan=

5a

Let an be a monotonically non-decreasing sequenceLet CRProve: an+C is monotonically non-decreasingProof:Let bn=an+Cn:an+1ann:an+1+Can+Cbn+1bnbn is monotonically non-decreasingan+C is monotonically non-decreasing

5b

Let an be a monotonically non-decreasing sequenceLet CRProve: C>0anC is monotonically non-decreasingProve: C<0anC is monotonically non-increasingProof:Let bn=anC,C>0n:an+1anC>0an+1CanCbn+1bnbn is monotonically non-decreasingC>0anC is monotonically non-decreasingLet cn=anC,C<0n:an+1anC<0an+1CanCbn+1bncn is monotonically non-increasingC<0anC is monotonically non-increasing

5c

Let an be a monotonically non-decreasing sequencean>0Prove or disprove: 1an is monotonically non-increasingProof:Let bn=1ann:an+1anan>0n:1an+11anbn+1bnbn is monotonically non-increasing1an is monotonically non-increasing

5d

Let an be a monotonically non-decreasing sequencean0Prove or disprove: 1an is monotonically non-increasingDisproof:Let a1=1,an=n1an:1,12,13,1a1<1a2>1a31an is not monotonically non-increasing

5e

Let an be a monotonically non-decreasing sequencean0bn=1anProve or disprove: N:n>N:bn+1bnProof:Let N:n>N:an<0an+1anan<01an+11anN:n>N:bn+1bnLet N:n>N:an<0n:an>0an+1an1an+11anbn+1bnbn is monotonically non-increasingN=1:n>N:bn+1bn

5f

Let an,bn be a monotonically non-decreasing sequencesProve or disprove: an+bn is monotonically non-decreasingProof:n:an+1an,bn+1bnan+1+bn+1an+bnan+bn is monotonically non-decreasing

5g

Let an,bn be a monotonically non-decreasing sequencesan>0,bn>0Prove or disprove: anbn is monotonically non-decreasingProof:n:an+1an,bn+1bnan>0,bn>0anbn>0an+1bn+1bn+1=bn+x,x0an+1bnan+1=an+y,y0anbnanbn is monotonically non-decreasing

5h

Let an,bn be monotonican>0,bn>0Prove or disprove: an+bn is monotonicDisproof:an=nbn:3,1,1,cn=an+bn=4,3,4,5,c1>c2<c3an+bn is not monotonic

6a

an=(1)n+1n+12nFind liman,limanSolution:a2n=(1)n+6n1a2n1=12n+112n11All elements of an are either in a2n or in a2n1{1,1} is a set of partial limits of anliman=1,liman=1

6b

bn=cos(nπ3)Find limbn,limbnSolution:Exist many partial limits of bnBut they are all between (1) and 1max(bn)=1,b6n=cos(2nπ)=11limbn=1min(bn)=1,b9n=cos(3nπ)=11limbn=1

6c

cn=(2)n4Find liman,limanSolution:c2n=22n4c2n1=22n14All elements of cn are either in c2n or in c2n1{,} is a set of partial limits of cnliman=,liman=