Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 6
1a
a
n
=
1
n
+
1
n
+
1
+
⋯
+
1
3
n
Prove:
lim
n
→
∞
a
n
=
L
≥
2
3
Proof:
a
n
+
1
−
a
n
=
1
3
n
+
3
+
1
3
n
+
2
+
1
3
n
+
1
−
1
n
<
3
3
n
−
1
n
=
0
⟹
a
n
−
monotonically decreasing
1
3
n
≤
1
3
n
−
1
≤
⋯
≤
1
n
+
1
≤
1
n
⟹
2
n
+
1
3
n
≤
1
n
⏟
≥
1
3
n
+
1
n
+
1
⏟
≥
1
3
n
+
⋯
+
1
3
n
2
3
=
2
n
3
n
≤
2
n
+
1
3
n
≤
a
n
⟹
a
n
is lower-bounded by
2
3
⟹
lim
n
→
∞
a
n
=
L
≥
2
3
1b
Explain in short why
a
n
from 1a does not converge to 0 as per the limit arithmetics
Explanation:
As
n
grows towards infinity, number of terms in the sum is also growing towards infinity,
even faster than
n
does itself, and thus the limit arithmetics do not apply in this case
1c
a
n
→
L
1. Prove or disprove:
∀
n
:
a
n
>
x
⟹
lim
n
→
∞
a
n
>
x
2. Prove or disprove:
∀
n
:
a
n
>
x
⟹
lim
n
→
∞
a
n
≥
x
Disproof for 1.
Let
a
n
=
1
n
∀
n
:
a
n
>
0
lim
n
→
∞
a
n
=
0
≯
0
⟹
∀
n
:
a
n
>
x
⟹
⧸
⟹
lim
n
→
∞
a
n
>
x
Proof for 2.
Let
lim
n
→
∞
a
n
=
L
<
x
⟹
x
−
L
>
0
a
n
>
x
⟹
a
n
−
x
>
0
Let
ε
=
x
−
L
2
∃
N
:
∀
n
>
N
:
|
a
n
−
L
|
<
ε
|
a
n
−
L
|
=
|
(
a
n
−
x
)
+
(
x
−
L
)
|
≤
|
a
n
−
x
|
+
|
x
−
L
|
<
ε
⟹
(
a
n
−
x
)
+
(
x
−
L
)
<
x
−
L
2
⟹
(
a
n
−
x
)
⏟
>
0
+
x
−
L
2
⏟
>
0
<
0
−
Contradiction!
⟹
lim
n
→
∞
a
n
≥
x
⟹
∀
n
:
a
n
>
x
⟹
lim
n
→
∞
a
n
≥
x
2
a
n
:
2
,
2
+
2
,
2
+
2
+
2
,
…
2a
Write
a
n
in the form or recursive formula:
a
n
=
{
2
n
=
1
2
+
a
n
−
1
otherwise
2b
Prove
a
n
is upper-bounded and monotonically non-decreasing, find
lim
n
→
∞
a
n
Proof:
Base case.
a
1
=
2
0
<
2
<
2
⟹
0
<
a
1
<
2
Induction step. Let
0
<
a
n
<
2
a
n
+
1
=
2
+
a
n
<
2
+
2
=
4
=
2
⟹
a
n
+
1
<
2
2
+
a
n
>
2
>
0
⟹
a
n
+
1
>
0
⟹
∀
n
∈
N
:
0
<
a
n
<
2
(
1
)
a
n
+
1
≥
a
n
⟺
2
+
a
n
≥
a
n
⟺
2
+
a
n
≥
a
n
2
⟺
a
n
2
−
a
n
−
2
<
0
⟺
−
1
<
a
n
<
2
∀
n
∈
N
:
0
<
a
n
<
2
⟹
−
1
<
a
n
<
2
⟹
a
n
+
1
≥
a
n
⟹
a
n
is monotonically non-decreasing
(
2
)
(
1
)
∧
(
2
)
⟹
∃
lim
n
→
∞
a
n
=
L
∈
R
Let
lim
n
→
∞
a
n
=
L
L
=
lim
n
→
∞
a
n
+
1
=
lim
n
→
∞
2
+
a
n
=
2
+
L
L
=
2
+
L
⟹
L
2
=
2
+
L
⟹
L
2
−
L
−
2
=
0
⟹
(
L
−
2
)
(
L
+
1
)
=
0
⟹
[
L
=
2
L
=
−
1
∀
n
∈
N
:
a
n
>
0
⟹
lim
n
→
∞
a
n
≥
0
⟹
L
≥
0
⟹
L
=
2
⟹
lim
n
→
∞
a
n
=
2
3
a
n
=
{
1
n
=
1
3
a
n
−
1
otherwise
Prove
a
n
converges and find
lim
n
→
∞
a
n
Proof:
Base case.
a
1
=
1
1
≤
1
<
3
⟹
1
≤
a
1
<
3
Induction step. Let
1
≤
a
n
<
3
a
n
+
1
=
3
a
n
<
3
⋅
3
=
3
⟹
a
n
+
1
<
3
3
a
n
≥
3
≥
1
⟹
a
n
+
1
≥
1
⟹
∀
n
∈
N
:
1
≤
a
n
<
3
(
1
)
a
n
+
1
>
a
n
⟺
3
a
n
>
a
n
⟺
3
a
n
>
a
n
2
⟺
a
n
(
a
n
−
3
)
<
0
⟺
0
<
a
n
<
3
∀
n
>
1
∈
N
:
1
≤
a
n
<
3
⟹
0
<
a
n
<
3
⟹
a
n
+
1
>
a
n
⟹
a
n
is monotonically increasing
(
2
)
(
1
)
∧
(
2
)
⟹
∃
lim
n
→
∞
a
n
=
L
∈
R
Let
lim
n
→
∞
a
n
=
L
L
=
lim
n
→
∞
a
n
+
1
=
lim
n
→
∞
3
a
n
=
3
L
L
=
3
L
⟺
L
2
=
3
L
⟺
[
L
=
0
L
=
3
∀
n
∈
N
:
a
n
≥
1
⟹
a
n
>
1
2
⟹
lim
n
→
∞
a
n
≥
1
2
⟹
lim
n
→
∞
≠
0
⟹
lim
n
→
∞
a
n
=
3
4
a
1
>
0
a
n
+
1
=
a
n
⋅
e
a
n
Find
lim
n
→
∞
a
n
Solution:
Base case.
a
1
>
0
Induction step. Let
a
n
>
0
a
n
+
1
=
a
n
⏟
>
0
⋅
e
a
n
⏟
>
0
>
0
⟹
a
n
+
1
>
0
⟹
∀
n
∈
N
:
a
n
>
0
a
n
+
1
>
a
n
⟺
a
n
⋅
e
a
n
>
a
n
⟺
e
a
n
>
1
⟺
a
n
>
0
∀
n
∈
N
:
a
n
>
0
⟹
a
n
+
1
>
a
n
⟹
a
n
is monotonically increasing
Let
lim
n
→
∞
a
n
=
L
∈
R
L
=
lim
n
→
∞
a
n
+
1
=
a
n
⋅
e
a
n
=
L
⋅
e
L
L
=
L
⋅
e
L
⟺
L
(
e
L
−
1
)
=
0
⟺
[
L
=
0
e
L
=
1
⟺
L
=
0
a
n
is monotonocally increasing
⟹
∃
lim
n
→
∞
a
n
L
≥
a
1
>
0
⟹
L
∉
R
⟹
lim
n
→
∞
a
n
=
∞
5a
Let
a
n
be a monotonically non-decreasing sequence
Let
C
∈
R
Prove:
a
n
+
C
is monotonically non-decreasing
Proof:
Let
b
n
=
a
n
+
C
∀
n
:
a
n
+
1
≥
a
n
⟹
∀
n
:
a
n
+
1
+
C
≥
a
n
+
C
⟹
b
n
+
1
≥
b
n
⟹
b
n
is monotonically non-decreasing
⟹
a
n
+
C
is monotonically non-decreasing
5b
Let
a
n
be a monotonically non-decreasing sequence
Let
C
∈
R
Prove:
C
>
0
⟹
a
n
⋅
C
is monotonically non-decreasing
Prove:
C
<
0
⟹
a
n
⋅
C
is monotonically non-increasing
Proof:
Let
b
n
=
a
n
⋅
C
,
C
>
0
∀
n
:
a
n
+
1
≥
a
n
⟹
C
>
0
a
n
+
1
⋅
C
≥
a
n
⋅
C
⟹
b
n
+
1
≥
b
n
⟹
b
n
is monotonically non-decreasing
⟹
C
>
0
⟹
a
n
⋅
C
is monotonically non-decreasing
Let
c
n
=
a
n
⋅
C
,
C
<
0
∀
n
:
a
n
+
1
≥
a
n
⟹
C
<
0
a
n
+
1
⋅
C
≤
a
n
⋅
C
⟹
b
n
+
1
≤
b
n
⟹
c
n
is monotonically non-increasing
⟹
C
<
0
⟹
a
n
⋅
C
is monotonically non-increasing
5c
Let
a
n
be a monotonically non-decreasing sequence
a
n
>
0
Prove or disprove:
1
a
n
is monotonically non-increasing
Proof:
Let
b
n
=
1
a
n
∀
n
:
a
n
+
1
≥
a
n
⟹
a
n
>
0
∀
n
:
1
a
n
+
1
≤
1
a
n
⟹
b
n
+
1
≤
b
n
⟹
b
n
is monotonically non-increasing
⟹
1
a
n
is monotonically non-increasing
5d
Let
a
n
be a monotonically non-decreasing sequence
a
n
≠
0
Prove or disprove:
1
a
n
is monotonically non-increasing
Disproof:
Let
a
1
=
−
1
,
a
n
=
n
1
a
n
:
−
1
,
1
2
,
1
3
,
…
1
a
1
<
1
a
2
>
1
a
3
⟹
1
a
n
is not monotonically non-increasing
5e
Let
a
n
be a monotonically non-decreasing sequence
a
n
≠
0
b
n
=
1
a
n
Prove or disprove:
∃
N
:
∀
n
>
N
:
b
n
+
1
≤
b
n
Proof:
Let
∃
N
:
∀
n
>
N
:
a
n
<
0
a
n
+
1
≥
a
n
⟹
a
n
<
0
1
a
n
+
1
≤
1
a
n
⟹
∃
N
:
∀
n
>
N
:
b
n
+
1
≤
b
n
Let
∄
N
:
∀
n
>
N
:
a
n
<
0
⟹
∀
n
:
a
n
>
0
a
n
+
1
≥
a
n
⟹
1
a
n
+
1
≤
1
a
n
⟹
b
n
+
1
≤
b
n
⟹
b
n
is monotonically non-increasing
⟹
∃
N
=
1
:
∀
n
>
N
:
b
n
+
1
≤
b
n
5f
Let
a
n
,
b
n
be a monotonically non-decreasing sequences
Prove or disprove:
a
n
+
b
n
is monotonically non-decreasing
Proof:
∀
n
:
a
n
+
1
≥
a
n
,
b
n
+
1
≥
b
n
⟹
a
n
+
1
+
b
n
+
1
≥
a
n
+
b
n
⟹
a
n
+
b
n
is monotonically non-decreasing
5g
Let
a
n
,
b
n
be a monotonically non-decreasing sequences
a
n
>
0
,
b
n
>
0
Prove or disprove:
a
n
b
n
is monotonically non-decreasing
Proof:
∀
n
:
a
n
+
1
≥
a
n
,
b
n
+
1
≥
b
n
a
n
>
0
,
b
n
>
0
⟹
a
n
b
n
>
0
a
n
+
1
b
n
+
1
≥
b
n
+
1
=
b
n
+
x
,
x
≥
0
a
n
+
1
b
n
≥
a
n
+
1
=
a
n
+
y
,
y
≥
0
a
n
b
n
⟹
a
n
b
n
is monotonically non-decreasing
5h
Let
a
n
,
b
n
be monotonic
a
n
>
0
,
b
n
>
0
Prove or disprove:
a
n
+
b
n
is monotonic
Disproof:
a
n
=
n
b
n
:
3
,
1
,
1
,
…
c
n
=
a
n
+
b
n
=
4
,
3
,
4
,
5
,
…
c
1
>
c
2
<
c
3
⟹
a
n
+
b
n
is not monotonic
6a
a
n
=
(
−
1
)
n
+
1
⋅
n
+
12
n
Find
lim
―
a
n
,
lim
―
a
n
Solution:
a
2
n
=
(
−
1
)
⋅
n
+
6
n
→
−
1
a
2
n
−
1
=
1
⋅
2
n
+
11
2
n
−
1
→
1
All elements of
a
n
are either in
a
2
n
or in
a
2
n
−
1
⟹
{
−
1
,
1
}
is a set of partial limits of
a
n
⟹
lim
―
a
n
=
1
,
lim
―
a
n
=
−
1
6b
b
n
=
cos
(
n
π
3
)
Find
lim
―
b
n
,
lim
―
b
n
Solution:
Exist many partial limits of
b
n
But they are all between
(
−
1
)
and
1
m
a
x
(
b
n
)
=
1
,
b
6
n
=
cos
(
2
n
π
)
=
1
→
1
⟹
lim
―
b
n
=
1
m
i
n
(
b
n
)
=
−
1
,
b
9
n
=
cos
(
3
n
π
)
=
−
1
→
−
1
⟹
lim
―
b
n
=
−
1
6c
c
n
=
(
−
2
)
n
−
4
Find
lim
―
a
n
,
lim
―
a
n
Solution:
c
2
n
=
2
2
n
−
4
→
∞
c
2
n
−
1
=
−
2
2
n
−
1
−
4
→
−
∞
All elements of
c
n
are either in
c
2
n
or in
c
2
n
−
1
⟹
{
−
∞
,
∞
}
is a set of partial limits of
c
n
⟹
lim
―
a
n
=
∞
,
lim
―
a
n
=
−
∞