Infi-1 7

1a

an=(11n2+6)2n2+n+5Find limnanSolution:an=(11n2+61)2n2+n+5limnan=elimn(2n2+n+5)/(n2+6)limn2n2+n+5n2+6=limn2+1n0+5n201+6n20=2limnan=e2=1e2

1b

bn=(n53nn5+2n2+n)n216Find limnbnSolution:bn=(n53nn5+2n2+n)n216=(n5+2n2+n2n24nn5+2n2+n)n216==(12n2+4nn5+2n2+n)n216=(12+4nn3+2+1n1)n216limnbn=elimn(n216)(2n2+4n)/(n5+2n2+n)limn(n216)(2n2+4n)n5+2n2+n=limn2n4+4n332n264nn5+2n2+n==limn1n02+4n32n264n31+2n3+1n42=0limnbn=e0=1

1c

cn=(n51n5+2n)n5+3Find limncnSolution:cn=(n5+2n2n1n5+2n)n5+3=(12n+1n5+2n)n5+3=(12+1nn4+21)n5+3limncn=elimn(n5+3)(2n+1)/(n5+2n)limn(n5+3)(2n+1)n5+2n=limn2n6+n5+6n+3n5+2n=limnn2+1n+6n5+3n61+2n42=limncn=e=1e=0

1d

dn=(n+2n)nn+1Find limndnSolution:dn=(1+2n1)nn+1limndn=elimn2n+1=e=

1e

pn=(nnn2n+1)16n216n3Find limnpnSolution:(p1)n=nnn2n+1=1n1n0+1nn01=0(p2)n=16n216n3pn=(p1)n(p2)n0=0limnpn=0

1f

qn=(n2+ln(n)ln(n)+n)ln(n)Find limnqnSolution:(q1)n=n2+ln(n)n+ln(n)=n+ln(n)n01+ln(n)n01=(q2)n=ln(n)qn=(q1)n(q2)nlimnqn=

2

an1,bn

2a

Give an example of an,bn such that anbn0Solution:an=11nbn=n2limnanbn=elimnbn(an1)=elimnn2/n=e=0limnanbn=0

2b

Give an example of an,bn such that anbnL,0<L<1Solution:an=11nbn=2nlimnanbn=elimnbn(an1)=elimn2n/n=e2=1e2

2c

Give an example of an,bn such that anbn1Solution:an=1+1n2bn=nlimnanbn=elimnbn(an1)=elimnn/n2=e0=1

2d

Give an example of an,bn such that anbnL,L>1Solution:an=1+1nbn=nlimnanbn=elimnbn(an1)=elimnn/n=e

2e

Give an example of an,bn such that anbnSolution:an=1+1nbn=n2limnanbn=elimnbn(an1)=elimnn2/n=e=

2f

Give an example of an,bn such that limnanbnSolution:an=1+(1)nnbn=nlimnanbn=elimnbn(an1)=elimn(1)nn/n=elimn(1)nlimn(1)nlimnanbn

3a

Prove: n=1enn6 is divergentProof:enn6enn60n=1enn6 is divergent

3b

Prove: n=1n42n+3e2n4+12n2nπ is divergentProof:an=n42n+3e2n4+12n2nπ=12n3+3en42+12n21n3πn412an0n=1an is divergent

3c

Prove: n=1n4(n+1)n+2ln(n+3) is divergentProof:an=n4(n+1)n+2ln(n+3)=nn+11n2n+2nln(n+3)an0n=1an is divergent

4a

Determine whether n=1n+1n is convergent or divergentAnd if convergent, find the value of the sumSolution:S1=21S2=21+32SN=21+32++NN1+N+1NSN=N+11Snn=1n+1n is divergent

4b

Determine whether n=114n21 is convergent or divergentAnd if convergent, find the value of the sumSolution:14n21=1(2n1)(2n+1)=(2n+1)(2n1)2(2n+1)(2n1)=14n214n+2S1=14214+2=1216S2=14214+2+18218+2=1216+16110SN=1216+16110++14N614N2+14N214N+2SN=1214N+2Sn=1214n+212n=114n21=12

5a

Determine whether n=02n+(3)n6n is convergent or divergentAnd if convergent, find the value of the sumSolution:2n+(3)n6n=(13)n+(12)nn=02n+(3)n6n=n=0(13)n13<1+n=0(12)n12>1=1113+11+12=32+23=136n=02n+(3)n6n=136

5b

Determine whether n=02n3n6n is convergent or divergentAnd if convergent, find the value of the sumSolution:2n+3n6n=(13)n(12)nn=02n3n6n=n=0(13)n13<1n=0(12)n12<1=11131112=322=12n=02n3n6n=12

5c

Determine whether n=12n3n6n is convergent or divergentAnd if convergent, find the value of the sumSolution:2n+3n6n=(13)n(12)nn=12n+(3)n6n=n=0(13)n13<1n=0(12)n12<1203060==111311120=322=12n=12n3n6n=12

5d

Determine whether n=13n+4nn5 is convergent or divergentAnd if convergent, find the value of the sumSolution:an=3n+4nn5=3nn5+4nn5an0n=1an is divergent

5e

Determine whether n=0e1n is convergent or divergentAnd if convergent, find the value of the sumSolution:e1n=e1en=e(1e)nn=0e1n=en=0(1e)n1e<1=e111e=e2e1n=0e1n=e2e1

5f

Determine whether n=0(1+1n)n/e is convergent or divergentAnd if convergent, find the value of the sumSolution:an=(1+1n)n/e=((1+1n)n)1/ee1/ean0n=1an is divergent