Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 7
1a
a
n
=
(
1
−
1
n
2
+
6
)
2
n
2
+
n
+
5
Find
lim
n
→
∞
a
n
Solution:
a
n
=
(
1
−
1
n
2
+
6
⏟
→
1
)
2
n
2
+
n
+
5
⏟
→
∞
⟹
lim
n
→
∞
a
n
=
e
lim
n
→
∞
−
(
2
n
2
+
n
+
5
)
/
(
n
2
+
6
)
lim
n
→
∞
−
2
n
2
+
n
+
5
n
2
+
6
=
−
lim
n
→
∞
2
+
1
n
⏞
→
0
+
5
n
2
⏞
→
0
1
+
6
n
2
⏟
→
0
=
−
2
⟹
lim
n
→
∞
a
n
=
e
−
2
=
1
e
2
1b
b
n
=
(
n
5
−
3
n
n
5
+
2
n
2
+
n
)
n
2
−
16
Find
lim
n
→
∞
b
n
Solution:
b
n
=
(
n
5
−
3
n
n
5
+
2
n
2
+
n
)
n
2
−
16
=
(
n
5
+
2
n
2
+
n
−
2
n
2
−
4
n
n
5
+
2
n
2
+
n
)
n
2
−
16
=
=
(
1
−
2
n
2
+
4
n
n
5
+
2
n
2
+
n
)
n
2
−
16
=
(
1
−
2
+
4
n
n
3
+
2
+
1
n
⏟
→
1
)
n
2
−
16
⏟
→
∞
⟹
lim
n
→
∞
b
n
=
e
lim
n
→
∞
−
(
n
2
−
16
)
(
2
n
2
+
4
n
)
/
(
n
5
+
2
n
2
+
n
)
lim
n
→
∞
−
(
n
2
−
16
)
(
2
n
2
+
4
n
)
n
5
+
2
n
2
+
n
=
−
lim
n
→
∞
2
n
4
+
4
n
3
−
32
n
2
−
64
n
n
5
+
2
n
2
+
n
=
=
−
lim
n
→
∞
1
n
⏟
→
0
⋅
2
+
4
n
−
32
n
2
−
64
n
3
1
+
2
n
3
+
1
n
4
⏟
→
2
=
0
⟹
lim
n
→
∞
b
n
=
e
0
=
1
1c
c
n
=
(
n
5
−
1
n
5
+
2
n
)
n
5
+
3
Find
lim
n
→
∞
c
n
Solution:
c
n
=
(
n
5
+
2
n
−
2
n
−
1
n
5
+
2
n
)
n
5
+
3
=
(
1
−
2
n
+
1
n
5
+
2
n
)
n
5
+
3
=
(
1
−
2
+
1
n
n
4
+
2
⏟
→
1
)
n
5
+
3
⏟
→
∞
⟹
lim
n
→
∞
c
n
=
e
lim
n
→
∞
−
(
n
5
+
3
)
(
2
n
+
1
)
/
(
n
5
+
2
n
)
lim
n
→
∞
−
(
n
5
+
3
)
(
2
n
+
1
)
n
5
+
2
n
=
−
lim
n
→
∞
2
n
6
+
n
5
+
6
n
+
3
n
5
+
2
n
=
−
lim
n
→
∞
n
⏟
→
∞
⋅
2
+
1
n
+
6
n
5
+
3
n
6
1
+
2
n
4
⏟
→
2
=
−
∞
⟹
lim
n
→
∞
c
n
=
e
−
∞
=
1
e
∞
=
0
1d
d
n
=
(
n
+
2
n
)
n
n
+
1
Find
lim
n
→
∞
d
n
Solution:
d
n
=
(
1
+
2
n
⏟
→
1
)
n
n
+
1
⏟
→
∞
⟹
lim
n
→
∞
d
n
=
e
lim
n
→
∞
2
n
+
1
=
e
∞
=
∞
1e
p
n
=
(
n
n
n
2
−
n
+
1
)
16
n
2
−
16
n
−
3
Find
lim
n
→
∞
p
n
Solution:
(
p
1
)
n
=
n
n
n
2
−
n
+
1
=
1
n
⏟
→
∞
−
1
n
⏟
→
0
+
1
n
n
⏟
→
0
→
1
∞
=
0
(
p
2
)
n
=
16
n
2
−
16
n
−
3
→
∞
⟹
p
n
=
(
p
1
)
n
(
p
2
)
n
→
0
∞
=
0
⟹
lim
n
→
∞
p
n
=
0
1f
q
n
=
(
n
2
+
ln
(
n
)
ln
(
n
)
+
n
)
ln
(
n
)
Find
lim
n
→
∞
q
n
Solution:
(
q
1
)
n
=
n
2
+
ln
(
n
)
n
+
ln
(
n
)
=
n
⏟
→
∞
+
ln
(
n
)
n
⏟
→
0
1
+
ln
(
n
)
n
⏟
→
0
→
∞
1
=
∞
(
q
2
)
n
=
ln
(
n
)
→
∞
q
n
=
(
q
1
)
n
(
q
2
)
n
→
∞
∞
⟹
lim
n
→
∞
q
n
=
∞
2
a
n
→
1
,
b
n
→
∞
2a
Give an example of
a
n
,
b
n
such that
a
n
b
n
→
0
Solution:
a
n
=
1
−
1
n
b
n
=
n
2
lim
n
→
∞
a
n
b
n
=
e
lim
n
→
∞
b
n
(
a
n
−
1
)
=
e
lim
n
→
∞
−
n
2
/
n
=
e
−
∞
=
0
lim
n
→
∞
a
n
b
n
=
0
2b
Give an example of
a
n
,
b
n
such that
a
n
b
n
→
L
,
0
<
L
<
1
Solution:
a
n
=
1
−
1
n
b
n
=
2
n
lim
n
→
∞
a
n
b
n
=
e
lim
n
→
∞
b
n
(
a
n
−
1
)
=
e
lim
n
→
∞
−
2
n
/
n
=
e
−
2
=
1
e
2
2c
Give an example of
a
n
,
b
n
such that
a
n
b
n
→
1
Solution:
a
n
=
1
+
1
n
2
b
n
=
n
lim
n
→
∞
a
n
b
n
=
e
lim
n
→
∞
b
n
(
a
n
−
1
)
=
e
lim
n
→
∞
n
/
n
2
=
e
0
=
1
2d
Give an example of
a
n
,
b
n
such that
a
n
b
n
→
L
,
L
>
1
Solution:
a
n
=
1
+
1
n
b
n
=
n
lim
n
→
∞
a
n
b
n
=
e
lim
n
→
∞
b
n
(
a
n
−
1
)
=
e
lim
n
→
∞
n
/
n
=
e
2e
Give an example of
a
n
,
b
n
such that
a
n
b
n
→
∞
Solution:
a
n
=
1
+
1
n
b
n
=
n
2
lim
n
→
∞
a
n
b
n
=
e
lim
n
→
∞
b
n
(
a
n
−
1
)
=
e
lim
n
→
∞
n
2
/
n
=
e
∞
=
∞
2f
Give an example of
a
n
,
b
n
such that
∄
lim
n
→
∞
a
n
b
n
Solution:
a
n
=
1
+
(
−
1
)
n
n
b
n
=
n
lim
n
→
∞
a
n
b
n
=
e
lim
n
→
∞
b
n
(
a
n
−
1
)
=
e
lim
n
→
∞
(
−
1
)
n
n
/
n
=
e
lim
n
→
∞
(
−
1
)
n
∄
lim
n
→
∞
(
−
1
)
n
⟹
∄
lim
n
→
∞
a
n
b
n
3a
Prove:
∑
n
=
1
∞
e
n
n
6
is divergent
Proof:
e
n
n
6
→
∞
⟹
e
n
n
6
↛
0
⟹
∑
n
=
1
∞
e
n
n
6
is divergent
3b
Prove:
∑
n
=
1
∞
n
4
−
2
n
+
3
e
2
n
4
+
12
n
2
−
n
−
π
is divergent
Proof:
a
n
=
n
4
−
2
n
+
3
e
2
n
4
+
12
n
2
−
n
−
π
=
1
−
2
n
3
+
3
e
n
4
2
+
12
n
2
−
1
n
3
−
π
n
4
→
1
2
⟹
a
n
↛
0
⟹
∑
n
=
1
∞
a
n
is divergent
3c
Prove:
∑
n
=
1
∞
n
4
(
n
+
1
)
n
+
2
ln
(
n
+
3
)
is divergent
Proof:
a
n
=
n
4
(
n
+
1
)
n
+
2
ln
(
n
+
3
)
=
n
n
+
1
⏟
→
1
⋅
n
2
n
+
2
⏟
→
∞
⋅
n
ln
(
n
+
3
)
⏟
→
∞
→
∞
⟹
a
n
↛
0
⟹
∑
n
=
1
∞
a
n
is divergent
4a
Determine whether
∑
n
=
1
∞
n
+
1
−
n
is convergent or divergent
And if convergent, find the value of the sum
Solution:
S
1
=
2
−
1
S
2
=
2
−
1
+
3
−
2
…
S
N
=
2
−
1
+
3
−
2
+
⋯
+
N
−
N
−
1
+
N
+
1
−
N
⟹
S
N
=
N
+
1
−
1
⟹
S
n
→
∞
⟹
∑
n
=
1
∞
n
+
1
−
n
is divergent
4b
Determine whether
∑
n
=
1
∞
1
4
n
2
−
1
is convergent or divergent
And if convergent, find the value of the sum
Solution:
1
4
n
2
−
1
=
1
(
2
n
−
1
)
(
2
n
+
1
)
=
(
2
n
+
1
)
−
(
2
n
−
1
)
2
(
2
n
+
1
)
(
2
n
−
1
)
=
1
4
n
−
2
−
1
4
n
+
2
⟹
S
1
=
1
4
−
2
−
1
4
+
2
=
1
2
−
1
6
S
2
=
1
4
−
2
−
1
4
+
2
+
1
8
−
2
−
1
8
+
2
=
1
2
−
1
6
+
1
6
−
1
10
…
S
N
=
1
2
−
1
6
+
1
6
−
1
10
+
⋯
+
1
4
N
−
6
−
1
4
N
−
2
+
1
4
N
−
2
−
1
4
N
+
2
⟹
S
N
=
1
2
−
1
4
N
+
2
S
n
=
1
2
−
1
4
n
+
2
→
1
2
⟹
∑
n
=
1
∞
1
4
n
2
−
1
=
1
2
5a
Determine whether
∑
n
=
0
∞
2
n
+
(
−
3
)
n
6
n
is convergent or divergent
And if convergent, find the value of the sum
Solution:
2
n
+
(
−
3
)
n
6
n
=
(
1
3
)
n
+
(
−
1
2
)
n
⟹
∑
n
=
0
∞
2
n
+
(
−
3
)
n
6
n
=
∑
n
=
0
∞
(
1
3
)
n
⏟
1
3
<
1
+
∑
n
=
0
∞
(
−
1
2
)
n
⏟
−
1
2
>
−
1
=
1
1
−
1
3
+
1
1
+
1
2
=
3
2
+
2
3
=
13
6
⟹
∑
n
=
0
∞
2
n
+
(
−
3
)
n
6
n
=
13
6
5b
Determine whether
∑
n
=
0
∞
2
n
−
3
n
6
n
is convergent or divergent
And if convergent, find the value of the sum
Solution:
2
n
+
3
n
6
n
=
(
1
3
)
n
−
(
1
2
)
n
⟹
∑
n
=
0
∞
2
n
−
3
n
6
n
=
∑
n
=
0
∞
(
1
3
)
n
⏟
1
3
<
1
−
∑
n
=
0
∞
(
1
2
)
n
⏟
1
2
<
1
=
1
1
−
1
3
−
1
1
−
1
2
=
3
2
−
2
=
−
1
2
⟹
∑
n
=
0
∞
2
n
−
3
n
6
n
=
−
1
2
5c
Determine whether
∑
n
=
1
∞
2
n
−
3
n
6
n
is convergent or divergent
And if convergent, find the value of the sum
Solution:
2
n
+
3
n
6
n
=
(
1
3
)
n
−
(
1
2
)
n
⟹
∑
n
=
1
∞
2
n
+
(
−
3
)
n
6
n
=
∑
n
=
0
∞
(
1
3
)
n
⏟
1
3
<
1
−
∑
n
=
0
∞
(
1
2
)
n
⏟
1
2
<
1
−
2
0
−
3
0
6
0
=
=
1
1
−
1
3
−
1
1
−
1
2
−
0
=
3
2
−
2
=
−
1
2
⟹
∑
n
=
1
∞
2
n
−
3
n
6
n
=
−
1
2
5d
Determine whether
∑
n
=
1
∞
3
n
+
4
n
n
5
is convergent or divergent
And if convergent, find the value of the sum
Solution:
a
n
=
3
n
+
4
n
n
5
=
3
n
n
5
⏟
→
∞
+
4
n
n
5
⏟
→
∞
→
∞
⟹
a
n
↛
0
⟹
∑
n
=
1
∞
a
n
is divergent
5e
Determine whether
∑
n
=
0
∞
e
1
−
n
is convergent or divergent
And if convergent, find the value of the sum
Solution:
e
1
−
n
=
e
⋅
1
e
n
=
e
⋅
(
1
e
)
n
⟹
∑
n
=
0
∞
e
1
−
n
=
e
⋅
∑
n
=
0
∞
(
1
e
)
n
⏟
1
e
<
1
=
e
⋅
1
1
−
1
e
=
e
2
e
−
1
⟹
∑
n
=
0
∞
e
1
−
n
=
e
2
e
−
1
5f
Determine whether
∑
n
=
0
∞
(
1
+
1
n
)
n
/
e
is convergent or divergent
And if convergent, find the value of the sum
Solution:
a
n
=
(
1
+
1
n
)
n
/
e
=
(
(
1
+
1
n
)
n
)
1
/
e
→
e
1
/
e
⟹
a
n
↛
0
⟹
∑
n
=
1
∞
a
n
is divergent