Infi-1 8

1

n=1n4n2+62n3n+4Determine whether series converge or divergeSolution:an=n4n2+62n3n+4=n1n0+6n3021n20+4n30limnan=limnn2=0n=1an diverge

2

n=14n2lnnDetermine whether series converge or divergeSolution:2lnn=eln(2)lnn=elnnln(2)=nln(2)n=14n2lnn=4n=11n1+ln(2)1+ln(2)>1n=11n1+ln(2) convergen=14n2lnn converge

3

n=15n62nDetermine whether series converge or divergeSolution:5n62nn=5n6n2=5n1(nn1)621162=12<1By the root test, n=15n62n converge

4

n=2sin4(nπ7)+cos2(2nπ9)n2nDetermine whether series converge or divergeSolution:sin4(nπ7)+cos2(2nπ9)n2n1+1n2n=2n2nLet an=2n2n0Let bn=1n20anbn=1n2n1n2=n2n2n=111n1limnanbn=1>0By the limit comparison test: n=1an convergen=1bn convergen=1bn=n=11n2convergen=1an=n=12n2n convergen=22n2n convergesin4(nπ7)+cos2(2nπ9)n2n2n2nBy the direct comparison test: n=22n2n convergen=2sin4(nπ7)+cos2(2nπ9)n2n converge

5

n=11(ln(n+3))nDetermine whether series converge or divergeSolution:Let an=1(ln(n+3))nlimn|an|n=limn1(ln(n+3))nn=limn1ln(n+3)=0limn|an|n=0<1By the root test: n=11(ln(n+3))n converge

6

n=12n+5(n+2)2(6n5)3Determine whether series converge or divergeSolution:Let an=2n+5(n+2)2(6n5)3Let bn=1n4anbn=(2n+5)n4(n+2)2(6n5)3=n5(2+5n)n2(1+2n)2n3(65n)3=2+5n(1+2n)2(65n)3263=1108limnanbn=1108<1n=1bn=n=11n4 convergeBy the limit comparison test: n=12n+5(n+2)2(6n5)3 converge

7

n=11n(lnn)2Determine whether series converge or divergeSolution:Let an=1n(lnn)2a2n=12n(ln(2n))2=12n(nln(2))2=12nn2(ln(2))2n=12n2nn2(ln(2))2=1(ln(2))2n=11n2n=11n2 convergen=12na2n convergean0n is monotonically increasing(lnn)2 is monotonically increasingn(lnn)2 is monotonically increasingan is monotonically decreasingBy the condensation test: n=1an convergen=11n(lnn)2 converge

8

n=1n63n2Determine whether series converge or divergeSolution:Let an=n63n2limn|an|n=limnn63n2n=limn(nn1)63n=0limnann=0<1By the root test: n=1n63n2 converge

9

n=11sin2(n6+n4+n2+1)nnDetermine whether series converge or divergeSolution:0sin2(n6+n4+n2+1)101sin2(n6+n4+n2+1)101sin2(n6+n4+n2+1)nn1nnn=11nn=n=11n3/2 convergeBy the direct comparison test: n=11sin2(n6+n4+n2+1)nn converge

10

n=18nn!nnDetermine whether series converge or divergeSolution:Let an=8nn!nnan+1an=8n+1(n+1)!nn(n+1)n+18nn!=8(n+1)nn(n+1)n+1=8(nn+1)n==8(n+1n)n=8(1+1n)n8elimnan+1an=8e>1By the ratio test: n=18nn!nn diverge

11

n=1(1+2)(1+3)(1+n)n!Determine whether series converge or divergeSolution:Let an=(1+2)(1+3)(1+n)n!an+1an=(1+2)(1+3)(1+n+1)n!(n+1)!(1+2)(1+3)(1+n)=1+n+1n+1==1n+1n+1n21+1n01=0limnan+1an=0<1By the ratio test: n=1(1+2)(1+3)(1+n)n! converge

12

n=1n2+n2+n+n5nn853n4+n+1Determine whether series converge or divergeSolution:Let an=n2+n2+n+n5nn853n4+n+1Dominant exponents are: 52143=15286=136Let bn=1n136anbn=(n2+n2+n+n5n)n136n853n4+n+1==n25/6+n38/6+n32/6+n56/6n32/6n853n4+n+1=n25/6n28/6+n38/6+n32/6n28/6+n56/6n32/6n28/6n853n16/6n4+n+1n2==1n0+1n3+1n40+11n4015n831=11+1n3+1n41=1011=0limnanbn=0<1n=1bn=n=11n13/6 convergeBy the limit comparison test: n=1n2+n2+n+n5nn853n4+n+1 converge