Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 9
1a
Let
∑
n
=
1
∞
a
n
,
∑
n
=
1
∞
b
n
>
0
diverge
Prove or disprove:
∑
n
=
1
∞
a
n
b
n
diverges
Disproof:
Let
a
n
=
b
n
=
1
n
∑
n
=
1
∞
1
n
diverges
∑
n
=
1
∞
a
n
b
n
=
∑
n
=
1
∞
1
n
2
converges
1b
Let
∑
n
=
1
∞
a
n
,
∑
n
=
1
∞
b
n
>
0
∑
n
=
1
∞
a
n
2
,
∑
n
=
1
∞
b
n
2
converge
Prove or disprove:
∑
n
=
1
∞
a
n
b
n
converges
Proof:
(
a
−
b
)
2
≥
0
⟹
a
2
+
b
2
≥
2
a
b
⟹
a
2
+
b
2
2
≥
a
b
Let
c
n
=
a
n
2
+
b
n
2
2
∑
n
=
1
∞
a
n
2
converges
∑
n
=
1
∞
b
n
2
converges
⟹
∑
n
=
1
∞
c
n
=
1
2
∑
n
=
1
∞
(
a
n
2
+
b
n
2
)
converges
c
n
≥
a
n
b
n
and
∑
n
=
1
∞
c
n
converges
⟹
By the direct comparison test:
∑
n
=
1
∞
a
n
b
n
converges
1c
Let
∑
n
=
1
∞
a
n
2
converge
Prove or disprove:
∑
n
=
1
∞
a
n
n
converges absolutely
Proof:
Let
b
n
=
1
n
∑
n
=
1
∞
|
a
n
|
>
0
∑
n
=
1
∞
(
|
a
n
|
)
2
=
∑
n
=
1
∞
a
n
2
converges
∑
n
=
1
∞
b
n
2
=
∑
n
=
1
∞
1
n
2
converges
⟹
∑
n
=
1
∞
|
a
n
n
|
=
∑
n
=
1
∞
|
a
n
|
1
n
=
∑
n
=
1
∞
|
a
n
|
b
n
converges as proved in 1b
⟹
∑
n
=
1
∞
a
n
n
converges absolutely
2
Determine whether series converges absolutely, conditionally or diverges
2a
∑
n
=
1
∞
sin
(
n
)
cos
(
n
)
sin
(
n
3
)
n
n
Solution:
|
sin
(
n
)
cos
(
n
)
sin
(
n
3
)
|
≤
1
⟹
|
sin
(
n
)
cos
(
n
)
sin
(
n
3
)
n
n
|
≤
1
n
n
∑
n
=
1
∞
1
n
n
converges
⟹
By the direct comparison test:
∑
n
=
1
∞
|
sin
(
n
)
cos
(
n
)
sin
(
n
3
)
n
n
|
converges
⟹
∑
n
=
1
∞
sin
(
n
)
cos
(
n
)
sin
(
n
3
)
n
n
converges absolutely
2b
∑
n
=
1
∞
(
−
1
)
n
+
1
n
!
3
n
Solution:
lim
n
→
∞
|
a
n
+
1
a
n
|
=
lim
n
→
∞
(
n
+
1
)
!
⋅
3
n
n
!
⋅
3
n
+
1
=
lim
n
→
∞
n
+
1
3
=
∞
>
1
⟹
By the ratio test:
∑
n
=
1
∞
(
−
1
)
n
+
1
n
!
3
n
diverges
2c
∑
n
=
1
∞
(
−
1
)
n
(
n
!
)
3
(
3
n
)
!
Solution:
lim
n
→
∞
|
a
n
+
1
a
n
|
=
lim
n
→
∞
(
(
n
+
1
)
!
)
3
⋅
(
3
n
)
!
(
3
n
+
3
)
!
⋅
(
n
!
)
3
=
lim
n
→
∞
(
n
+
1
)
3
(
3
n
+
3
)
(
3
n
+
2
)
(
3
n
+
1
)
=
=
lim
n
→
∞
(
n
+
1
)
2
3
(
3
n
+
2
)
(
3
n
+
1
)
=
lim
n
→
∞
n
2
+
2
n
+
1
27
n
2
+
27
n
+
9
=
1
27
<
1
⟹
By the ratio test:
∑
n
=
1
∞
(
−
1
)
n
(
n
!
)
3
(
3
n
)
!
converges absolutely
2d
∑
n
=
1
∞
(
−
1
)
n
ln
(
n
!
)
Solution:
∑
n
=
1
∞
|
(
−
1
)
n
ln
(
n
!
)
|
=
∑
n
=
1
∞
1
ln
(
n
!
)
n
n
>
n
!
⟹
ln
(
n
n
)
>
ln
(
n
!
)
⟹
1
ln
(
n
n
)
<
1
ln
(
n
!
)
a
n
=
1
ln
(
n
!
)
b
n
=
1
ln
(
n
n
)
=
1
n
⋅
ln
(
n
)
b
2
n
=
1
2
n
⋅
n
⋅
ln
(
2
)
∑
n
=
1
∞
2
n
2
n
⋅
n
⋅
ln
(
2
)
=
1
ln
(
2
)
∑
n
=
1
∞
1
n
diverges
⟹
By the Cauchy’s condensation test:
∑
n
=
1
∞
b
n
diverges
a
n
>
b
n
⟹
By the direct comparison test:
∑
n
=
1
∞
a
n
diverges
1
ln
(
n
!
)
is monotonically non-increasing and
lim
n
→
∞
1
ln
(
n
!
)
=
0
⟹
By the Leibniz criterion:
∑
n
=
1
∞
(
−
1
)
n
ln
(
n
!
)
converges
⟹
∑
n
=
1
∞
(
−
1
)
n
ln
(
n
!
)
converges conditionally
2e
∑
n
=
1
∞
(
−
1
)
n
2
n
⋅
(
1
−
cos
(
2
n
)
)
n
Solution:
Let
a
n
=
(
−
1
)
n
(
1
−
cos
(
2
n
)
)
n
2
n
lim
n
→
∞
|
a
n
|
n
=
lim
n
→
∞
(
1
−
cos
(
2
n
)
)
2
n
≥
2
⟹
0
<
2
n
<
π
2
⟹
0
<
cos
(
2
n
)
<
1
⟹
(
1
−
cos
(
2
n
)
)
2
<
1
2
⟹
lim
n
→
∞
(
1
−
cos
(
2
n
)
)
2
≤
1
2
<
1
⟹
By the root test:
∑
n
=
1
∞
(
−
1
)
n
2
n
⋅
(
1
−
cos
(
2
n
)
)
n
converges absolutely
2f
∑
n
=
1
∞
sin
2
(
n
2
)
n
Solution:
cos
(
n
)
=
1
−
2
sin
2
(
n
2
)
sin
2
(
n
2
)
=
1
−
cos
(
n
)
2
⟹
∑
n
=
1
∞
sin
2
(
n
2
)
n
=
∑
n
=
1
∞
1
−
cos
(
n
)
2
n
=
1
2
⋅
(
∑
n
=
1
∞
1
n
−
∑
n
=
1
∞
cos
(
n
)
n
)
∑
n
=
1
∞
cos
(
n
)
is bounded
,
1
n
is monotonically decreasing and
1
n
→
0
⟹
By the Dirichlet’s test:
∑
n
=
1
∞
cos
(
n
)
n
converges
∑
n
=
1
∞
1
n
diverges
⟹
By the series arithmetics:
∑
n
=
1
∞
1
n
−
∑
n
=
1
∞
cos
(
n
)
n
diverges
⟹
∑
n
=
1
∞
sin
2
(
n
2
)
n
diverges
2g
∑
n
=
1
∞
(
−
1
)
n
(
n
n
+
1
)
n
2
Solution:
lim
n
→
∞
|
(
−
1
)
n
(
n
n
+
1
)
n
2
|
n
=
lim
n
→
∞
(
n
n
+
1
)
n
=
lim
n
→
∞
1
(
1
+
1
n
)
n
=
1
e
<
1
⟹
By the root test:
∑
n
=
1
∞
(
−
1
)
n
(
n
n
+
1
)
n
2
converges absolutely
2h
∑
n
=
1
∞
n
n
(
n
+
1
)
n
+
1
Solution:
Let
a
n
=
n
n
(
n
+
1
)
n
+
1
Let
b
n
=
1
n
lim
n
→
∞
a
n
b
n
=
lim
n
→
∞
n
n
+
1
(
n
+
1
)
n
+
1
=
lim
n
→
∞
(
1
−
1
n
+
1
)
n
+
1
=
1
e
∑
n
=
1
∞
b
n
diverges
⟹
By the limit comparison test:
∑
n
=
1
∞
a
n
diverges
⟹
∑
n
=
1
∞
n
n
(
n
+
1
)
n
+
1
diverges
2i
∑
n
=
1
∞
(
−
1
)
n
(
n
+
5
−
n
+
4
)
Solution:
(
−
1
)
n
(
n
+
5
−
n
+
4
)
=
(
−
1
)
n
(
n
+
5
−
(
n
+
4
)
)
n
+
5
+
n
+
4
=
(
−
1
)
n
n
+
5
+
n
+
4
1
n
+
5
+
n
+
4
>
1
2
n
+
2
n
=
1
2
2
n
∑
n
=
1
∞
1
2
2
n
diverges
⟹
By the direct comparison test:
∑
n
=
1
∞
1
n
+
5
+
n
+
4
diverges
1
n
+
5
+
n
+
4
is monotonically decreasing and
1
n
+
5
+
n
+
4
→
0
⟹
By the Leibniz criterion:
∑
n
=
1
∞
(
−
1
)
n
n
+
5
+
n
+
4
converges
⟹
∑
n
=
1
∞
(
−
1
)
n
(
n
+
5
−
n
+
4
)
converges conditionally
3
∑
n
=
1
∞
(
−
1
)
n
+
1
(
2
n
−
1
)
α
Determine for which values of
α
series converges absolutely, conditionally or diverges
Solution:
∑
n
=
1
∞
|
(
−
1
)
n
+
1
(
2
n
−
1
)
α
|
=
∑
n
=
1
∞
1
(
2
n
−
1
)
α
lim
n
→
∞
1
(
2
n
−
1
)
α
1
n
α
=
lim
n
→
∞
(
n
2
n
−
1
)
α
=
lim
n
→
∞
(
1
2
−
1
n
)
α
=
1
2
α
⟹
By the limit comparison test:
∑
n
=
1
∞
1
(
2
n
−
1
)
α
converges
⟺
∑
n
=
1
∞
1
n
α
converges
⟺
α
>
1
⟹
∑
n
=
1
∞
(
−
1
)
n
+
1
(
2
n
−
1
)
α
converges absolutely when
α
>
1
1
(
2
n
−
1
)
α
is monotonically decreasing and
1
(
2
n
−
1
)
α
→
0
when
α
>
0
⟹
By the Leibniz criterion:
∑
n
=
1
∞
(
−
1
)
n
+
1
(
2
n
−
1
)
α
converges when
α
>
0
Let
α
≤
0
Then
∄
lim
n
→
∞
(
−
1
)
n
(
2
n
−
1
)
α
⟹
∑
n
=
1
∞
(
−
1
)
n
+
1
(
2
n
−
1
)
α
diverges
⟹
{
∑
n
=
1
∞
(
−
1
)
n
+
1
(
2
n
−
1
)
α
converges absolutely
α
>
1
∑
n
=
1
∞
(
−
1
)
n
+
1
(
2
n
−
1
)
α
converges conditionally
0
<
α
≤
1
∑
n
=
1
∞
(
−
1
)
n
+
1
(
2
n
−
1
)
α
diverges
α
≤
0
4a
∑
n
=
1
∞
a
n
>
0
∃
p
:
by the limit comparison test with
1
n
p
,
∑
n
=
1
∞
a
n
diverges
Show that it can be proved that the limit comparison test with
1
n
will also show divergence
Solution:
Let
lim
n
→
∞
a
n
1
n
p
=
L
By the limit comparison test
∑
n
=
1
∞
a
n
diverges
⟹
∑
n
=
1
∞
1
n
p
also diverges
⟹
L
must be
>
0
or
∞
,
otherwise test won’t show divergence of
a
n
If
L
>
0
then
∑
n
=
1
∞
1
n
p
diverges by limit comparison test
If
L
=
∞
then
∑
n
=
1
∞
1
n
p
must diverge
otherwise limit comparison test won’t show divergence
∑
n
=
1
∞
1
n
p
diverges
⟹
p
≤
1
p
≤
1
⟹
n
p
≤
n
⟹
1
n
p
≥
1
n
⟹
a
n
1
n
p
≤
a
n
1
n
⟹
L
=
lim
n
→
∞
a
n
1
n
p
≤
lim
n
→
∞
a
n
1
n
⟹
lim
n
→
∞
a
n
1
n
≥
L
>
0
⟹
Limit comparison test with
1
n
will also show divergence of
∑
n
=
1
∞
a
n
4b
∑
n
=
1
∞
a
n
>
0
∃
p
:
by the limit comparison test with
1
n
p
,
∑
n
=
1
∞
a
n
converges
Show that it can be proved that the limit comparison test with
1
n
q
,
1
<
q
<
p
will also show convergence
Solution:
Let
lim
n
→
∞
a
n
1
n
p
=
L
By the limit comparison test
∑
n
=
1
∞
a
n
converges
⟹
∑
n
=
1
∞
1
n
p
also converges
⟹
L
must be
≥
0
and
L
≠
∞
,
otherwise test won’t show convergence of
a
n
If
L
=
0
,
then
∑
n
=
1
∞
1
n
p
converges
If
L
>
0
and
L
≠
∞
then
∑
n
=
1
∞
must converge
otherwise limit comparison test won’t show convergence
∑
n
=
1
∞
1
n
p
converges
⟹
p
>
1
p
>
1
∧
p
∈
R
⟹
∃
q
=
p
+
1
2
,
1
<
q
<
p
1
<
q
<
p
⟹
n
q
<
n
p
⟹
1
n
q
>
1
n
p
⟹
a
n
1
n
q
<
a
n
1
n
p
⟹
lim
n
→
∞
a
n
1
n
q
≤
lim
n
→
∞
a
n
1
n
p
⟹
lim
n
→
∞
a
n
1
n
q
≥
0
and
≠
∞
⟹
Limit comparison test with
1
n
q
will also show convergence of
∑
n
=
1
∞
a
n
4c
Give an example of divergent series, whose divergence cannot be proved
by the limit comparison test with
1
n
p
Solution:
Let
a
n
=
1
n
ln
n
∑
n
=
1
∞
a
n
diverges by the Cauchy’s condensation test
If the limit comparison test with
1
n
p
will show divergence
then the limit comparison test with
1
n
will also show divergence
lim
n
→
∞
a
n
1
n
=
lim
n
→
∞
1
ln
n
=
0
Which does not show divergence
⟹
Limit comparison test with
1
n
p
also doesn’t show divergence
4c
Give an example of convergent series, whose divergence cannot be proved
by the limit comparison test with
1
n
p
Solution:
Let
a
n
=
1
n
(
ln
n
)
2
∑
n
=
1
∞
a
n
converges by Cauchy’s condensation test
lim
n
→
∞
a
n
1
n
p
=
lim
n
→
∞
n
p
−
1
(
ln
n
)
2
=
lim
n
→
∞
(
n
(
p
−
1
)
/
2
ln
n
)
2
=
p
>
1
⟹
p
−
1
2
>
0
∞
Which does not show convergence
⟹
Limit comparison test with
1
n
p
doesn’t show convergence