Infi-1 9

1a

Let n=1an,n=1bn>0 divergeProve or disprove: n=1anbn divergesDisproof:Let an=bn=1nn=11n divergesn=1anbn=n=11n2 converges

1b

Let n=1an,n=1bn>0n=1an2,n=1bn2 convergeProve or disprove: n=1anbn convergesProof:(ab)20a2+b22aba2+b22abLet cn=an2+bn22n=1an2 convergesn=1bn2 convergesn=1cn=12n=1(an2+bn2) convergescnanbn and n=1cn convergesBy the direct comparison test: n=1anbn converges

1c

Let n=1an2 convergeProve or disprove: n=1ann converges absolutelyProof:Let bn=1nn=1|an|>0n=1(|an|)2=n=1an2 convergesn=1bn2=n=11n2 convergesn=1|ann|=n=1|an|1n=n=1|an|bn converges as proved in 1bn=1ann converges absolutely

2

Determine whether series converges absolutely, conditionally or diverges

2a

n=1sin(n)cos(n)sin(n3)nnSolution:|sin(n)cos(n)sin(n3)|1|sin(n)cos(n)sin(n3)nn|1nnn=11nn convergesBy the direct comparison test: n=1|sin(n)cos(n)sin(n3)nn| convergesn=1sin(n)cos(n)sin(n3)nn converges absolutely

2b

n=1(1)n+1n!3nSolution:limn|an+1an|=limn(n+1)!3nn!3n+1=limnn+13=>1By the ratio test: n=1(1)n+1n!3n diverges

2c

n=1(1)n(n!)3(3n)!Solution:limn|an+1an|=limn((n+1)!)3(3n)!(3n+3)!(n!)3=limn(n+1)3(3n+3)(3n+2)(3n+1)==limn(n+1)23(3n+2)(3n+1)=limnn2+2n+127n2+27n+9=127<1By the ratio test: n=1(1)n(n!)3(3n)! converges absolutely

2d

n=1(1)nln(n!)Solution:n=1|(1)nln(n!)|=n=11ln(n!)nn>n!ln(nn)>ln(n!)1ln(nn)<1ln(n!)an=1ln(n!)bn=1ln(nn)=1nln(n)b2n=12nnln(2)n=12n2nnln(2)=1ln(2)n=11n divergesBy the Cauchy’s condensation test: n=1bn divergesan>bnBy the direct comparison test: n=1an diverges1ln(n!) is monotonically non-increasing and limn1ln(n!)=0By the Leibniz criterion: n=1(1)nln(n!) convergesn=1(1)nln(n!) converges conditionally

2e

n=1(1)n2n(1cos(2n))nSolution:Let an=(1)n(1cos(2n))n2nlimn|an|n=limn(1cos(2n))2n20<2n<π20<cos(2n)<1(1cos(2n))2<12limn(1cos(2n))212<1By the root test: n=1(1)n2n(1cos(2n))n converges absolutely

2f

n=1sin2(n2)nSolution:cos(n)=12sin2(n2)sin2(n2)=1cos(n)2n=1sin2(n2)n=n=11cos(n)2n=12(n=11nn=1cos(n)n)n=1cos(n) is bounded,1n is monotonically decreasing and 1n0By the Dirichlet’s test: n=1cos(n)n convergesn=11n divergesBy the series arithmetics: n=11nn=1cos(n)n divergesn=1sin2(n2)n diverges

2g

n=1(1)n(nn+1)n2Solution:limn|(1)n(nn+1)n2|n=limn(nn+1)n=limn1(1+1n)n=1e<1By the root test: n=1(1)n(nn+1)n2 converges absolutely

2h

n=1nn(n+1)n+1Solution:Let an=nn(n+1)n+1Let bn=1nlimnanbn=limnnn+1(n+1)n+1=limn(11n+1)n+1=1en=1bn diverges By the limit comparison test: n=1an divergesn=1nn(n+1)n+1 diverges

2i

n=1(1)n(n+5n+4)Solution:(1)n(n+5n+4)=(1)n(n+5(n+4))n+5+n+4=(1)nn+5+n+41n+5+n+4>12n+2n=122nn=1122n divergesBy the direct comparison test: n=11n+5+n+4 diverges1n+5+n+4 is monotonically decreasing and 1n+5+n+40By the Leibniz criterion: n=1(1)nn+5+n+4 convergesn=1(1)n(n+5n+4) converges conditionally

3

n=1(1)n+1(2n1)αDetermine for which values of α series converges absolutely, conditionally or divergesSolution:n=1|(1)n+1(2n1)α|=n=11(2n1)αlimn1(2n1)α1nα=limn(n2n1)α=limn(121n)α=12αBy the limit comparison test: n=11(2n1)α convergesn=11nα convergesα>1n=1(1)n+1(2n1)α converges absolutely when α>11(2n1)α is monotonically decreasing and 1(2n1)α0 when α>0By the Leibniz criterion: n=1(1)n+1(2n1)α converges when α>0Let α0Then limn(1)n(2n1)αn=1(1)n+1(2n1)α diverges{n=1(1)n+1(2n1)α converges absolutelyα>1n=1(1)n+1(2n1)α converges conditionally0<α1n=1(1)n+1(2n1)α divergesα0

4a

n=1an>0p:by the limit comparison test with 1np,n=1an divergesShow that it can be proved that the limit comparison test with 1nwill also show divergenceSolution:Letlimnan1np=LBy the limit comparison test n=1an divergesn=11np also divergesL must be >0 or , otherwise test won’t show divergence of anIf L>0 then n=11np diverges by limit comparison testIf L= then n=11np must divergeotherwise limit comparison test won’t show divergencen=11np divergesp1p1npn1np1nan1npan1nL=limnan1nplimnan1nlimnan1nL>0Limit comparison test with 1n will also show divergence of n=1an

4b

n=1an>0p:by the limit comparison test with 1np,n=1an convergesShow that it can be proved that the limit comparison test with 1nq,1<q<pwill also show convergenceSolution:Let limnan1np=LBy the limit comparison test n=1an convergesn=11np also convergesL must be 0 and L, otherwise test won’t show convergence of anIf L=0, then n=11np convergesIf L>0 and L then n=1 must convergeotherwise limit comparison test won’t show convergencen=11np convergesp>1p>1pRq=p+12,1<q<p1<q<pnq<np1nq>1npan1nq<an1nplimnan1nqlimnan1nplimnan1nq0 and Limit comparison test with 1nq will also show convergence of n=1an

4c

Give an example of divergent series, whose divergence cannot be provedby the limit comparison test with 1npSolution:Let an=1nlnnn=1an diverges by the Cauchy’s condensation testIf the limit comparison test with 1np will show divergencethen the limit comparison test with 1n will also show divergencelimnan1n=limn1lnn=0Which does not show divergenceLimit comparison test with 1np also doesn’t show divergence

4c

Give an example of convergent series, whose divergence cannot be provedby the limit comparison test with 1npSolution:Let an=1n(lnn)2n=1an converges by Cauchy’s condensation testlimnan1np=limnnp1(lnn)2=limn(n(p1)/2lnn)2=p>1p12>0Which does not show convergenceLimit comparison test with 1np doesn’t show convergence