Linear-1 1

1a

Solve: 4x+6=0Z1111 is prime Z11 is a field4x+6=0+(6)(6)5(4x+6)+(6)=54x+(6+(6)=54x+0=54x=5(41)41341(4x)=53(414)x=4(1)x=4x=4

1b

Solve: x2=1Z8Let us try all possible values of x in Z802=012=122=432=142=052=162=472=1[x=1x=3x=5x=7  over Z8

1c

Given: F is a field where 2 is an invertible (20F)Prove: x2=1 over F has exactly two different solutionsx2=1x21=0(x+1)(x1)=0[x=1x=1{20F2+(1)=0+(1)1=1x2=1 has exactly one distinct solution20F2+(1)0+(1)11x2=1 has exactly two distinct solutionsIf F=Z2, then:20Z2x2=1 has exactly one distinct solution

2

Prove: aF:(a)=aProved in the first lecture: a,b,cF:{a+b=0a+c=0b=cb=a{a+b=0b+b=0a=bb=(a)a=(a)

3a

Solve: {3y+6z=92x+4y+7z=22x+5y+10z=21 over R(036924722151021)R3R1(151021247220369)R2=R22R1(1510210613200369)R3=2R3+R2(1510210613200012){x+5y+10z=216y13z=20z=2z=2z=26y13z=6y+26=206y=6y=1x+5y+10z=x+520=21x=6{x=6y=1z=2

3b

Solve: {5x+3y+3z=07x+3y+7z=07x+9y=0 over Z11(533073707900)R2=R2+4R1R1=9R1(155001507900)R3=R3+4R1(155001500790)R3=R3+4R2(155001500070){x+5y+5z=0y+5z=07z=07z=0z=0y+5z=y=0x+5y+5z=x=0{x=0y=0z=0

3c

Solve: {ix+2y+z+2w=3x+(12i)y+z=13i over C(i2123112i1013i)R2=R2R1R2=R2i(i21230i1+i2i)R1=R12R2R2=R2(i)(i012i24i1011+i2i1)R1=R1(i)(102+i42ii011+i2i1){x+0y+(2+i)z+(42i)w=iy+(1+i)z+(2i)w=1{x=(2i)z+(4+2i)wiy=(1i)z+(02i)w+1zC;wC

4a

Solve: {3y+6z=02x+4y+7z=0x+5y+10z=0 over RLet us use the transformations made in 3a:(0360247015100)(1510?0613?001?)The right side of the system is all zero over R, so basic transformations do not affect it:(15100061300010){x+5y+10z=06y13z=0z=0z=0z=06y13z=6y=0y=0x+5y+10z=x=0x=0{x=0y=0z=0

4b

Solve: {5x+3y+3z=57x+3y+7z=77x+9y=7 over Z11Let us use the transformations made in 3b:(533573777907)(155?015?007?)Let us also note that the right side of the system is equal to the first column:(5..57..77..7)Equal matrices will stay equal after applying the same basic transformations(577)(100)(533573777907)(155101500070){x+5y+5z=1y+5z=07z=07z=0z=0y+5z=y=0y=0x+5y+5z=xx=1{x=1y=0z=0

4c

Solve: {ix+2y+z+2w=0x+(12i)y+z=0 over CLet us use the transformations made in 3c:(i2120112i100)(102+i42i?011+i2i?)The right side of the system is all zero over C, so basic transformations do not affect it:(i2120112i100)(102+i42i0011+i2i0){x+0y+(2+i)z+(42i)w=0y+(1+i)z+(2i)w=0{x=(2i)z+(4+2i)wy=(1i)z+(02i)wzC;wC

5

For the system of equations: {(10+2a)x+(5+5a)y+5z=a(5+a)y+5z=a(15+3a)x+(10+8a)y+(3+a)z=2+2a over RFor all values of parameter a define whether system has 0, 1 or  solutions(10+2a5+5a5a05+a5a15+3a10+8a3+a2+2a)R3=2R33R1(10+2a5+5a5a05+a5a05+a9+2a4+a)R3=R3R2(10+2a5+5a5a05+a5a0014+2a4)R1=12R1R1=R1R2(5+a2a0005+a5a0014+2a4){(5+a)x+(2a)y+0z=0(5+a)y+5z=a(14+2a)z=4(14+2a)z=4(7+a)z=2{:a=7z=27+a:a7a7:(5+a)y+5z=(5+a)y+107+a=a(5+a)y=a27a+107+a=(a2)(a5)a7{yR:a=5y=a2a7:a5{(5+a)x+(2a)y=10x+10y=0x=y:a=5(5+a)x+(2a)y=10y=0y=0a2=0:a=5:a=5(5+a)x+2a(y)=0(5+a)x=2a(a2)a7x=2a(a2)(a7)(a+5):|a|5{:a=70 solutions:a=50 solutionsx=y;z=1:a=5 solutionsx=2a(a2)(a7)(a+5);y=a2a7;z=2a7:a{5,5,7}1 solution

6i

For the system of equations: {x+y+az=1x+ay+z=1ax+y+z=1For all values of parameter aR define whether system has 0, 1 or  solutions(11a11a11a111)R3=R3aR1R2=R2R1(11a10a11a001a1a21a)R3=R3+R2(11a10a11a0002aa21a){x+y+az=1(a1)y+(1a)z=0(1a)(a+2)z=(1a)(1a)(a+2)z=(1a){:a=2zR:a=1z=1a+2:a1a2:(a1)y+(1a)z=0(a1)(yz)=0{yR:a=1y=z:a1x+y+az=1{x+y+z=1x=1yz:a=1x+a+1a+2=1x=1a+2:a1{:a=20 solutionsx=1yz;yR;zR:a=1 solutionsx=y=z=1a+2:a{2,1}1 solution

6ii

For the system of equations: {x+y+az=1x+ay+z=1ax+y+z=1For all values of parameter aZ3 define whether system has 0, 1 or  solutions(11a11a11a111)R3=R3+2aR1R2=R2+2R1(11a10a+21+2a001+2a1+2a21+2a)R3=R3+R2(11a10a+21+2a0002(a2+a+1)1+2a){x+y+az=1(a+2)y+(1+2a)z=02(a2+a+1)z=1+2aLet a=0:{2z=1z=22y+z=02y+2=0y=1Z3=2x+y=1x+2=1x=1Z3=2Let a=1:{2(0)z=00=0zZ30y+0z=00=0yZ3x+y+z=1x=1+(y)+(z)As there are 32=9 combinations of y and z in Z3, there are 9 solutions in this caseLet a=2:{2(1)z=22z=2z=1y+2z=0y=1x+y+2z=1x+1+2=1x=1{x=y=z=1:a=01 solutionx=y=z=2:a=21 solutionx=1+(y)+(z);yZ3;zZ3:a=19 solutions

7a

Determine if the following matrices are row equivalent: A=(123456789),B=(102112322)A(123456789)R3=R37R1R2=R24R1(1230360612)R2=13R2R3=R32R2(123012000)R1=R12R2(101012000)B(102112322)R3=R33R1R2=R2R1(102014028)R3=R32R2(102014000)Both matrices are canonical, but the third column of the matrices is not equalmatrices A,B are not row equivalent

7b

Determine if the following matrices are row equivalent: A=(101222345),B=(1234567810)A(101222345)R3=R33R1R2=12R2R1(101010042)R1=R1R3R3=12R32R2(100010001)B(1234567810)R3=R37R1R2=R24R1(1230360611)R3=R3+6R2R2=13R2(123012001)R1=R12R23R3R2=R22R3(100010001)Both matrices are canonical and equal to I3matrices A,B are row equivalent