Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 1
1a
Solve:
4
x
+
6
=
0
∣
Z
11
11
is prime
⟹
Z
11
is a field
4
x
+
6
=
0
∣
+
(
−
6
)
(
−
6
)
≡
5
(
4
x
+
6
)
+
(
−
6
)
=
5
4
x
+
(
6
+
(
−
6
)
=
5
4
x
+
0
=
5
4
x
=
5
∣
∗
(
4
−
1
)
4
−
1
≡
3
4
−
1
(
4
x
)
=
5
∗
3
(
4
−
1
∗
4
)
x
=
4
(
1
)
x
=
4
x
=
4
1b
Solve:
x
2
=
1
∣
Z
8
Let us try all possible values of
x
in
Z
8
0
2
=
0
1
2
=
1
2
2
=
4
3
2
=
1
4
2
=
0
5
2
=
1
6
2
=
4
7
2
=
1
⟹
[
x
=
1
x
=
3
x
=
5
x
=
7
over
Z
8
1c
Given:
F
is a field where
2
is an invertible
(
2
≠
0
F
)
Prove:
x
2
=
1
over
F
has exactly two different solutions
x
2
=
1
x
2
−
1
=
0
(
x
+
1
)
(
x
−
1
)
=
0
[
x
=
1
x
=
−
1
{
2
≡
0
F
⟹
2
+
(
−
1
)
=
0
+
(
−
1
)
⟹
1
=
−
1
⟹
x
2
=
1
has exactly one distinct solution
2
≢
0
F
⟹
2
+
(
−
1
)
≠
0
+
(
−
1
)
⟹
1
≠
−
1
⟹
x
2
=
1
has exactly two distinct solutions
If
F
=
Z
2
, then:
2
≡
0
Z
2
⟹
x
2
=
1
has exactly one distinct solution
2
Prove:
∀
a
∈
F
:
−
(
−
a
)
=
a
Proved in the first lecture:
∀
a
,
b
,
c
∈
F
:
{
a
+
b
=
0
a
+
c
=
0
⟹
b
=
c
b
=
−
a
{
a
+
b
=
0
b
+
−
b
=
0
⟹
a
=
−
b
−
b
=
−
(
−
a
)
⟹
a
=
−
(
−
a
)
3a
Solve:
{
3
y
+
6
z
=
−
9
2
x
+
4
y
+
7
z
=
−
22
x
+
5
y
+
10
z
=
−
21
over
R
(
0
3
6
−
9
2
4
7
−
22
1
5
10
−
21
)
→
R
3
↔
R
1
(
1
5
10
−
21
2
4
7
−
22
0
3
6
−
9
)
→
R
2
=
R
2
−
2
R
1
(
1
5
10
−
21
0
−
6
−
13
20
0
3
6
−
9
)
→
R
3
=
2
R
3
+
R
2
(
1
5
10
−
21
0
−
6
−
13
20
0
0
−
1
2
)
{
x
+
5
y
+
10
z
=
−
21
−
6
y
−
13
z
=
20
−
z
=
2
−
z
=
2
⟹
z
=
−
2
−
6
y
−
13
z
=
−
6
y
+
26
=
20
⟹
−
6
y
=
−
6
⟹
y
=
1
x
+
5
y
+
10
z
=
x
+
5
−
20
=
−
21
⟹
x
=
−
6
⟹
{
x
=
−
6
y
=
1
z
=
−
2
3b
Solve:
{
5
x
+
3
y
+
3
z
=
0
7
x
+
3
y
+
7
z
=
0
7
x
+
9
y
=
0
over
Z
11
(
5
3
3
0
7
3
7
0
7
9
0
0
)
→
R
2
=
R
2
+
4
R
1
R
1
=
9
R
1
(
1
5
5
0
0
1
5
0
7
9
0
0
)
→
R
3
=
R
3
+
4
R
1
(
1
5
5
0
0
1
5
0
0
7
9
0
)
→
R
3
=
R
3
+
4
R
2
(
1
5
5
0
0
1
5
0
0
0
7
0
)
{
x
+
5
y
+
5
z
=
0
y
+
5
z
=
0
7
z
=
0
7
z
=
0
⟹
z
=
0
y
+
5
z
=
y
=
0
x
+
5
y
+
5
z
=
x
=
0
⟹
{
x
=
0
y
=
0
z
=
0
3c
Solve:
{
i
x
+
2
y
+
z
+
2
w
=
3
x
+
(
1
−
2
i
)
y
+
z
=
1
−
3
i
over
C
(
i
2
1
2
3
1
1
−
2
i
1
0
1
−
3
i
)
→
R
2
=
R
2
−
R
1
R
2
=
R
2
∗
i
(
i
2
1
2
3
0
i
−
1
+
i
−
2
i
)
→
R
1
=
R
1
−
2
R
2
R
2
=
R
2
∗
(
−
i
)
(
i
0
−
1
−
2
i
2
−
4
i
1
0
1
1
+
i
2
i
1
)
→
R
1
=
R
1
∗
(
−
i
)
(
1
0
−
2
+
i
−
4
−
2
i
−
i
0
1
1
+
i
2
i
1
)
{
x
+
0
y
+
(
−
2
+
i
)
z
+
(
−
4
−
2
i
)
w
=
−
i
y
+
(
1
+
i
)
z
+
(
2
i
)
w
=
1
⟹
{
x
=
(
2
−
i
)
z
+
(
4
+
2
i
)
w
−
i
y
=
(
−
1
−
i
)
z
+
(
0
−
2
i
)
w
+
1
z
∈
C
;
w
∈
C
4a
Solve:
{
3
y
+
6
z
=
0
2
x
+
4
y
+
7
z
=
0
x
+
5
y
+
10
z
=
0
over
R
Let us use the transformations made in 3a:
(
0
3
6
0
2
4
7
0
1
5
10
0
)
→
(
1
5
10
?
0
−
6
−
13
?
0
0
−
1
?
)
The right side of the system is all zero over
R
, so basic transformations do not affect it:
(
1
5
10
0
0
−
6
−
13
0
0
0
−
1
0
)
{
x
+
5
y
+
10
z
=
0
−
6
y
−
13
z
=
0
−
z
=
0
−
z
=
0
⟹
z
=
0
−
6
y
−
13
z
=
−
6
y
=
0
⟹
y
=
0
x
+
5
y
+
10
z
=
x
=
0
⟹
x
=
0
{
x
=
0
y
=
0
z
=
0
4b
Solve:
{
5
x
+
3
y
+
3
z
=
5
7
x
+
3
y
+
7
z
=
7
7
x
+
9
y
=
7
over
Z
11
Let us use the transformations made in 3b:
(
5
3
3
5
7
3
7
7
7
9
0
7
)
→
(
1
5
5
?
0
1
5
?
0
0
7
?
)
Let us also note that the right side of the system is equal to the first column:
(
5
.
.
5
7
.
.
7
7
.
.
7
)
Equal matrices will stay equal after applying the same basic transformations
⟹
(
5
7
7
)
→
(
1
0
0
)
⟹
(
5
3
3
5
7
3
7
7
7
9
0
7
)
→
(
1
5
5
1
0
1
5
0
0
0
7
0
)
{
x
+
5
y
+
5
z
=
1
y
+
5
z
=
0
7
z
=
0
7
z
=
0
⟹
z
=
0
y
+
5
z
=
y
=
0
⟹
y
=
0
x
+
5
y
+
5
z
=
x
⟹
x
=
1
{
x
=
1
y
=
0
z
=
0
4c
Solve:
{
i
x
+
2
y
+
z
+
2
w
=
0
x
+
(
1
−
2
i
)
y
+
z
=
0
over
C
Let us use the transformations made in 3c:
(
i
2
1
2
0
1
1
−
2
i
1
0
0
)
→
(
1
0
−
2
+
i
−
4
−
2
i
?
0
1
1
+
i
2
i
?
)
The right side of the system is all zero over
C
, so basic transformations do not affect it:
⟹
(
i
2
1
2
0
1
1
−
2
i
1
0
0
)
→
(
1
0
−
2
+
i
−
4
−
2
i
0
0
1
1
+
i
2
i
0
)
{
x
+
0
y
+
(
−
2
+
i
)
z
+
(
−
4
−
2
i
)
w
=
0
y
+
(
1
+
i
)
z
+
(
2
i
)
w
=
0
⟹
{
x
=
(
2
−
i
)
z
+
(
4
+
2
i
)
w
y
=
(
−
1
−
i
)
z
+
(
0
−
2
i
)
w
z
∈
C
;
w
∈
C
5
For the system of equations:
{
(
10
+
2
a
)
x
+
(
−
5
+
5
a
)
y
+
5
z
=
a
(
−
5
+
a
)
y
+
5
z
=
a
(
15
+
3
a
)
x
+
(
−
10
+
8
a
)
y
+
(
3
+
a
)
z
=
−
2
+
2
a
over
R
For all values of parameter
a
define whether system has 0, 1 or
∞
solutions
(
10
+
2
a
−
5
+
5
a
5
a
0
−
5
+
a
5
a
15
+
3
a
−
10
+
8
a
3
+
a
−
2
+
2
a
)
→
R
3
=
2
R
3
−
3
R
1
(
10
+
2
a
−
5
+
5
a
5
a
0
−
5
+
a
5
a
0
−
5
+
a
−
9
+
2
a
−
4
+
a
)
→
R
3
=
R
3
−
R
2
(
10
+
2
a
−
5
+
5
a
5
a
0
−
5
+
a
5
a
0
0
−
14
+
2
a
−
4
)
→
R
1
=
1
2
R
1
R
1
=
R
1
−
R
2
(
5
+
a
2
a
0
0
0
−
5
+
a
5
a
0
0
−
14
+
2
a
−
4
)
{
(
5
+
a
)
x
+
(
2
a
)
y
+
0
z
=
0
(
−
5
+
a
)
y
+
5
z
=
a
(
−
14
+
2
a
)
z
=
−
4
(
−
14
+
2
a
)
z
=
−
4
⟹
(
−
7
+
a
)
z
=
−
2
{
∅
:
a
=
7
z
=
−
2
−
7
+
a
:
a
≠
7
a
≠
7
:
(
−
5
+
a
)
y
+
5
z
=
(
−
5
+
a
)
y
+
−
10
−
7
+
a
=
a
⟹
(
−
5
+
a
)
y
=
a
2
−
7
a
+
10
−
7
+
a
=
(
a
−
2
)
(
a
−
5
)
a
−
7
⟹
{
y
∈
R
:
a
=
5
y
=
a
−
2
a
−
7
:
a
≠
5
{
(
5
+
a
)
x
+
(
2
a
)
y
=
10
x
+
10
y
=
0
⟹
x
=
−
y
:
a
=
5
(
5
+
a
)
x
+
(
2
a
)
y
=
10
y
=
0
⟹
y
=
0
⟹
a
−
2
=
0
:
a
=
5
⟹
∅
:
a
=
−
5
(
5
+
a
)
x
+
2
a
(
y
)
=
0
⟹
(
5
+
a
)
x
=
−
2
a
(
a
−
2
)
a
−
7
⟹
x
=
−
2
a
(
a
−
2
)
(
a
−
7
)
(
a
+
5
)
:
|
a
|
≠
5
⟹
{
∅
:
a
=
7
⟹
0
solutions
∅
:
a
=
−
5
⟹
0
solutions
x
=
−
y
;
z
=
1
:
a
=
5
⟹
∞
solutions
x
=
−
2
a
(
a
−
2
)
(
a
−
7
)
(
a
+
5
)
;
y
=
a
−
2
a
−
7
;
z
=
−
2
a
−
7
:
a
∉
{
−
5
,
5
,
7
}
⟹
1
solution
6i
For the system of equations:
{
x
+
y
+
a
z
=
1
x
+
a
y
+
z
=
1
a
x
+
y
+
z
=
1
For all values of parameter
a
∈
R
define whether system has 0, 1 or
∞
solutions
(
1
1
a
1
1
a
1
1
a
1
1
1
)
→
R
3
=
R
3
−
a
∗
R
1
R
2
=
R
2
−
R
1
(
1
1
a
1
0
a
−
1
1
−
a
0
0
1
−
a
1
−
a
2
1
−
a
)
→
R
3
=
R
3
+
R
2
(
1
1
a
1
0
a
−
1
1
−
a
0
0
0
2
−
a
−
a
2
1
−
a
)
{
x
+
y
+
a
z
=
1
(
a
−
1
)
y
+
(
1
−
a
)
z
=
0
(
1
−
a
)
(
a
+
2
)
z
=
(
1
−
a
)
(
1
−
a
)
(
a
+
2
)
z
=
(
1
−
a
)
⟹
{
∅
:
a
=
−
2
z
∈
R
:
a
=
1
z
=
1
a
+
2
:
a
≠
1
a
≠
−
2
:
(
a
−
1
)
y
+
(
1
−
a
)
z
=
0
⟹
(
a
−
1
)
(
y
−
z
)
=
0
{
y
∈
R
:
a
=
1
y
=
z
:
a
≠
1
x
+
y
+
a
z
=
1
⟹
{
x
+
y
+
z
=
1
⟹
x
=
1
−
y
−
z
:
a
=
1
x
+
a
+
1
a
+
2
=
1
⟹
x
=
1
a
+
2
:
a
≠
1
⟹
{
∅
:
a
=
−
2
⟹
0
solutions
x
=
1
−
y
−
z
;
y
∈
R
;
z
∈
R
:
a
=
1
⟹
∞
solutions
x
=
y
=
z
=
1
a
+
2
:
a
∉
{
−
2
,
1
}
⟹
1
solution
6ii
For the system of equations:
{
x
+
y
+
a
z
=
1
x
+
a
y
+
z
=
1
a
x
+
y
+
z
=
1
For all values of parameter
a
∈
Z
3
define whether system has 0, 1 or
∞
solutions
(
1
1
a
1
1
a
1
1
a
1
1
1
)
→
R
3
=
R
3
+
2
a
R
1
R
2
=
R
2
+
2
R
1
(
1
1
a
1
0
a
+
2
1
+
2
a
0
0
1
+
2
a
1
+
2
a
2
1
+
2
a
)
→
R
3
=
R
3
+
R
2
(
1
1
a
1
0
a
+
2
1
+
2
a
0
0
0
2
(
a
2
+
a
+
1
)
1
+
2
a
)
{
x
+
y
+
a
z
=
1
(
a
+
2
)
y
+
(
1
+
2
a
)
z
=
0
2
(
a
2
+
a
+
1
)
z
=
1
+
2
a
Let
a
=
0
:
{
2
z
=
1
⟹
z
=
2
2
y
+
z
=
0
⟹
2
y
+
2
=
0
⟹
y
=
−
1
Z
3
=
2
x
+
y
=
1
⟹
x
+
2
=
1
⟹
x
=
−
1
Z
3
=
2
Let
a
=
1
:
{
2
(
0
)
z
=
0
⟹
0
=
0
⟹
z
∈
Z
3
0
y
+
0
z
=
0
⟹
0
=
0
⟹
y
∈
Z
3
x
+
y
+
z
=
1
⟹
x
=
1
+
(
−
y
)
+
(
−
z
)
As there are
3
2
=
9
combinations of
y
and
z
in
Z
3
, there are
9
solutions in this case
Let
a
=
2
:
{
2
(
1
)
z
=
2
⟹
2
z
=
2
⟹
z
=
1
y
+
2
z
=
0
⟹
y
=
1
x
+
y
+
2
z
=
1
⟹
x
+
1
+
2
=
1
⟹
x
=
1
⟹
{
x
=
y
=
z
=
1
:
a
=
0
⟹
1
solution
x
=
y
=
z
=
2
:
a
=
2
⟹
1
solution
x
=
1
+
(
−
y
)
+
(
−
z
)
;
y
∈
Z
3
;
z
∈
Z
3
:
a
=
1
⟹
9
solutions
7a
Determine if the following matrices are row equivalent:
A
=
(
1
2
3
4
5
6
7
8
9
)
,
B
=
(
1
0
2
1
1
−
2
3
2
−
2
)
A
≡
(
1
2
3
4
5
6
7
8
9
)
→
R
3
=
R
3
−
7
R
1
R
2
=
R
2
−
4
R
1
(
1
2
3
0
−
3
−
6
0
−
6
−
12
)
→
R
2
=
−
1
3
R
2
R
3
=
R
3
−
2
R
2
(
1
2
3
0
1
2
0
0
0
)
→
R
1
=
R
1
−
2
R
2
(
1
0
−
1
0
1
2
0
0
0
)
B
≡
(
1
0
2
1
1
−
2
3
2
−
2
)
→
R
3
=
R
3
−
3
R
1
R
2
=
R
2
−
R
1
(
1
0
2
0
1
−
4
0
2
−
8
)
→
R
3
=
R
3
−
2
R
2
(
1
0
2
0
1
−
4
0
0
0
)
Both matrices are canonical, but the third column of the matrices is not equal
⟹
matrices
A
,
B
are not row equivalent
7b
Determine if the following matrices are row equivalent:
A
=
(
1
0
1
2
2
2
3
4
5
)
,
B
=
(
1
2
3
4
5
6
7
8
10
)
A
≡
(
1
0
1
2
2
2
3
4
5
)
→
R
3
=
R
3
−
3
R
1
R
2
=
1
2
R
2
−
R
1
(
1
0
1
0
1
0
0
4
2
)
→
R
1
=
R
1
−
R
3
R
3
=
1
2
R
3
−
2
R
2
(
1
0
0
0
1
0
0
0
1
)
B
≡
(
1
2
3
4
5
6
7
8
10
)
→
R
3
=
R
3
−
7
R
1
R
2
=
R
2
−
4
R
1
(
1
2
3
0
−
3
−
6
0
−
6
−
11
)
→
R
3
=
R
3
+
6
R
2
R
2
=
−
1
3
R
2
(
1
2
3
0
1
2
0
0
1
)
→
R
1
=
R
1
−
2
R
2
−
3
R
3
R
2
=
R
2
−
2
R
3
(
1
0
0
0
1
0
0
0
1
)
Both matrices are canonical and equal to
I
3
⟹
matrices
A
,
B
are row equivalent