Linear-1 10

1

Let ARn×nLet T:Rn×nRn×n,T(B)=ABBALet S:Rn×nRn×n,S(B)=AB+BA

1a

Prove: T,S are linear transformationsProof:Let αR,B1,B2Rn×nT(B1+αB2)=A(B1+αB2)(B1+αB2)A=AB1B1A+αAB2αB2A==T(B1)+αT(B2)T is a linear transformationS(B1+αB2)=A(B1+αB2)+(B1+αB2)A=AB1+B1A+αAB2+αB2A==S(B1)+αS(B2)S is a linear transformation

1b

Let A=(2222)Find basis and dimension of Im(T),ker(T)Prove: Im(T)ker(T)=R2×2Solution:Im(T)={BR2×2|CR2×2:T(B)=C}={ABBA|BR2×2}AB=(2222)(abcd)=(2a+2c2b+2d2a+2c2b+2d)BA=(abcd)(2222)=(2a+2b2a+2b2c+2d2c+2d)ABBA=(2c2b2d2a2a2d2b2c)=(2b2c)(1001)+(2a2d)(0110)Im(T)={(2b2c)(1001)+(2a2d)(0110)|a,b,c,dR}==sp({(1001),(0110)}){(1001),(0110)} is a linear independence{(1001),(0110)} is a basis of Im(T) and dim(Im(T))=2ker(T)={BR2×2|T(B)=0}={(abcd)|ad=0bc=0}={(abba)|a,bR}==sp({(1001),(0110)}){(1001),(0110)} is a linear independence{(1001),(0110)} is a basis of ker(T) and dim(ker(T))=2ker(T)Im(T)=sp({(1001),(0110)})sp({(1001),(0110)})={0}dim(ker(T)Im(T))=0ker(T),Im(T)R2×2ker(T)+Im(T)R2×2dim(ker(T)+Im(T))=dim(ker(T))+dim(Im(T))dim(ker(T)Im(T))dim(ker(T)+Im(T))=2+20=4=dim(R2×2)ker(T)+Im(T)=R2×2ker(T)Im(T)={0}ker(T)Im(T)=R2×2

1c

Let A=(1111)Find basis of ker(ST),Im(ST)Solution:ST(B)=S(T(B))=S(ABBA)=A(ABBA)+(ABBA)A==AABABA+ABABAA=A2BBA2A2=(1111)(1111)=(2222)Let A=A2ST(B)=ABBA=TA(B)Im(ST),ker(ST) are equal to Im(T),ker(T) from the previous task

1d

Let CA={BRn×n|AB=BA}Prove: CA is a vector subspace of Rn×nProof:CARn×nCA={BRn×n|ABBA=0}=ker(T)Kernel of a linear transformation is always a vector subspace of the domainCA is a vector subspace of Rn×n

2

Let nN:1mnLet f(m) be m’th derivative of fT:Rn[x]Rn[x],T(f)=xm1f(m)

2a

Prove: T is a linear transformationProof:Let f,gRn[x],αRT(f+αg)=xm1(f+αg)(m)=xm1(f(m)+α(g(m)))=xm1f(m)+αxm1g(m)==T(f)+αT(g)T is a linear transformation

2b

Find basis and dimension of Im(T),ker(T)Solution:Let fRn[x]f(x)=k=0nakxk(akxk)(m)={0k<mk!(km)!akxkmkmf(m)(x)=(k=0nakxk)(m)=k=0n(akxk)(m)=k=mnk!(km)!akxkmT(f)=xm1(k=mnk!(km)!akxkm)=k=mnk!(km)!akxk1==m!amxm1+(m+1)!am+1xm++n!(nm)!anxn1T(f)sp({xm1,xm,,xn1})Im(T)sp({xm1,xm,,xn1})Let m1kn1xksp({xm1,xm,,xn1})xk+1Rn[x]T(xk+1)=xm1(k+1)!(k+1m)!xk+1m=(k+1)!(k+1m)!xkT((k+1m)!(k+1)!xk+1)=xkxkIm(T){xm1,,xn1}Im(T)sp({xm1,,xn1}) is a minimal vector space containing {xm1,,xn1}sp({xm1,,xn1})Im(T)Im(T)=sp({xm1,,xn1}){xm1,,xn1} is a linear independence{xm1,,xn1} is a basis of Im(T) and dim(Im(T))=nm+1dim(ker(T))=dim(Rn[x])dim(Im(T))=m1.{1,x,,xm1} is a linear independence2.dim(sp({1,x,,xm1}))=m=dim(ker(T)){1,x,,xm1} is a basis of ker(T) and dim(ker(T))=m

3

Let V,W be finitely generated vector spaces over FLet S,T:VW be linear transformations

3a

Prove or disprove: ker(S)ker(T)={0V}Im(S)Im(T)={0W}Disproof:Let W{0}Let S=T be invertible1.dim(V)=dim(W)2.ker(T)=ker(S)=ker(S)ker(T)={0V}3.Im(T)=Im(S)=Im(S)Im(T)=W{0W}For example:V=W=R3T=S=IdR3ker(S)ker(T)={0}Im(S)Im(T)=R3

3b

Prove: Im(T)Im(S) a linear transformation R:VV,T=SRProof:Let Im(T)Im(S)vV:v1V:T(v)=S(v1)Let u,vV,αFu1,v1:S(u1)=T(u),S(v1)=T(v)S(v1+αu1)=S(v1)+αS(u1)=T(v)+αT(u)=T(v+αu)Let R:VV,R(v)=v1R(v+αu)=wS(w)=T(v+αu)w=v1+αu1=R(v)+αR(u)R(v+αu)=R(v)+αR(u)R is a linear transformationvV:v1:T(v)=S(v1)=S(R(v))T=SR(1)Let  a linear transformation R:VV,T=SRvV:T(v)=S(R(v))vV:v1V:R(v)=v1vV:v1V:T(v)=S(v1)Im(T)Im(S)(2)(1) and (2)Im(T)Im(S) a linear transformation R:VV,T=SR

4

Let T:VV be a linear transformation1.Im(T)=Im(T2)2.ker(T)=ker(T2)3.ker(T)Im(T)=VProve: 123Proof:Let Im(T)=Im(T2)dim(Im(T))=dim(Im(T2))dim(ker(T))=dim(V)dim(Im(T))=dim(V)dim(Im(T2))=dim(ker(T2))Let vker(T)T(v)=0T(T(v))=T(0)=0vker(T2)ker(T)ker(T2)ker(T)=ker(T2)12Let ker(T)=ker(T2)dim(ker(T))=dim(ker(T2))dim(Im(T))=dim(V)dim(ker(T))=dim(V)dim(ker(T2))=dim(Im(T2))Let vIm(T2)uV:T(T(u))=vT(u)VvIm(T)Im(T2)Im(T)Im(T)=Im(T2)2112Let ker(T)=ker(T2)ker(T),Im(T)Vker(T)+Im(T)VLet vker(T)Im(T)T(v)=0uV:T(u)=vT(T(u))=0uker(T2)uker(T)T(u)=0v=0ker(T)Im(T)={0}dim(ker(T)Im(T))=0dim(ker(T)+Im(T))=dim(ker(T))+dim(Im(T))=dim(V)ker(T)+Im(T)=Vker(T)Im(T)={0}ker(T)Im(T)=V23Let ker(T)Im(T)=VLet vker(T2)T2(v)=T(T(v))=0Let w=T(v)wIm(T)T(w)=0wker(T)wker(T)Im(T)w=0T(v)=0vker(T)ker(T2)ker(T)As shown earlier, ker(T)ker(T2ker(T)=ker(T2)3223123

5a

Prove or disprove:  different non-invertible linear transformations S,T:R3R3such that: Im(S)=Im(T),ker(S)=ker(T)Proof:A=(000010001),B=(000010001)T(v)=Av,S(v)=BvT((abc))=(0bc),S((abc))=(0bc)Im(T)=Im(S)=sp({(010),(001)})ker(T)=ker(S)=sp({(100)})

5b

Prove or disprove:  non-invertible linear transformations S,T:R3R3 such that:ker(S)=Im(T),ker(T)=Im(S)Proof:A=(000010001),B=(100000000)T(v)=Av,S(v)=BvT((abc))=(0bc),S((abc))=(a00)Im(T)=ker(S)=sp({(010),(001)})Im(S)=ker(T)=sp({(100)})