Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 10
1
Let
A
∈
R
n
×
n
Let
T
:
R
n
×
n
→
R
n
×
n
,
T
(
B
)
=
A
B
−
B
A
Let
S
:
R
n
×
n
→
R
n
×
n
,
S
(
B
)
=
A
B
+
B
A
1a
Prove:
T
,
S
are linear transformations
Proof:
Let
α
∈
R
,
B
1
,
B
2
∈
R
n
×
n
T
(
B
1
+
α
B
2
)
=
A
(
B
1
+
α
B
2
)
−
(
B
1
+
α
B
2
)
A
=
A
B
1
−
B
1
A
+
α
A
B
2
−
α
B
2
A
=
=
T
(
B
1
)
+
α
T
(
B
2
)
⟹
T
is a linear transformation
S
(
B
1
+
α
B
2
)
=
A
(
B
1
+
α
B
2
)
+
(
B
1
+
α
B
2
)
A
=
A
B
1
+
B
1
A
+
α
A
B
2
+
α
B
2
A
=
=
S
(
B
1
)
+
α
S
(
B
2
)
⟹
S
is a linear transformation
1b
Let
A
=
(
2
2
2
2
)
Find basis and dimension of
I
m
(
T
)
,
k
e
r
(
T
)
Prove:
I
m
(
T
)
⊕
k
e
r
(
T
)
=
R
2
×
2
Solution:
I
m
(
T
)
=
{
B
∈
R
2
×
2
|
∃
C
∈
R
2
×
2
:
T
(
B
)
=
C
}
=
{
A
B
−
B
A
|
B
∈
R
2
×
2
}
A
B
=
(
2
2
2
2
)
(
a
b
c
d
)
=
(
2
a
+
2
c
2
b
+
2
d
2
a
+
2
c
2
b
+
2
d
)
B
A
=
(
a
b
c
d
)
(
2
2
2
2
)
=
(
2
a
+
2
b
2
a
+
2
b
2
c
+
2
d
2
c
+
2
d
)
A
B
−
B
A
=
(
2
c
−
2
b
2
d
−
2
a
2
a
−
2
d
2
b
−
2
c
)
=
(
2
b
−
2
c
)
(
−
1
0
0
1
)
+
(
2
a
−
2
d
)
(
0
−
1
1
0
)
I
m
(
T
)
=
{
(
2
b
−
2
c
)
(
−
1
0
0
1
)
+
(
2
a
−
2
d
)
(
0
−
1
1
0
)
|
a
,
b
,
c
,
d
∈
R
}
=
=
s
p
(
{
(
−
1
0
0
1
)
,
(
0
−
1
1
0
)
}
)
{
(
−
1
0
0
1
)
,
(
0
−
1
1
0
)
}
is a linear independence
⟹
{
(
−
1
0
0
1
)
,
(
0
−
1
1
0
)
}
is a basis of
I
m
(
T
)
and
d
i
m
(
I
m
(
T
)
)
=
2
k
e
r
(
T
)
=
{
B
∈
R
2
×
2
|
T
(
B
)
=
0
}
=
{
(
a
b
c
d
)
|
a
−
d
=
0
b
−
c
=
0
}
=
{
(
a
b
b
a
)
|
a
,
b
∈
R
}
=
=
s
p
(
{
(
1
0
0
1
)
,
(
0
1
1
0
)
}
)
{
(
1
0
0
1
)
,
(
0
1
1
0
)
}
is a linear independence
⟹
{
(
1
0
0
1
)
,
(
0
1
1
0
)
}
is a basis of
k
e
r
(
T
)
and
d
i
m
(
k
e
r
(
T
)
)
=
2
k
e
r
(
T
)
∩
I
m
(
T
)
=
s
p
(
{
(
−
1
0
0
1
)
,
(
0
−
1
1
0
)
}
)
∩
s
p
(
{
(
1
0
0
1
)
,
(
0
1
1
0
)
}
)
=
{
0
}
⟹
d
i
m
(
k
e
r
(
T
)
∩
I
m
(
T
)
)
=
0
k
e
r
(
T
)
,
I
m
(
T
)
⊆
R
2
×
2
⟹
k
e
r
(
T
)
+
I
m
(
T
)
⊆
R
2
×
2
d
i
m
(
k
e
r
(
T
)
+
I
m
(
T
)
)
=
d
i
m
(
k
e
r
(
T
)
)
+
d
i
m
(
I
m
(
T
)
)
−
d
i
m
(
k
e
r
(
T
)
∩
I
m
(
T
)
)
⟹
d
i
m
(
k
e
r
(
T
)
+
I
m
(
T
)
)
=
2
+
2
−
0
=
4
=
d
i
m
(
R
2
×
2
)
⟹
k
e
r
(
T
)
+
I
m
(
T
)
=
R
2
×
2
∧
k
e
r
(
T
)
∩
I
m
(
T
)
=
{
0
}
⟹
k
e
r
(
T
)
⊕
I
m
(
T
)
=
R
2
×
2
1c
Let
A
=
(
1
1
1
1
)
Find basis of
k
e
r
(
S
T
)
,
I
m
(
S
T
)
Solution:
S
T
(
B
)
=
S
(
T
(
B
)
)
=
S
(
A
B
−
B
A
)
=
A
(
A
B
−
B
A
)
+
(
A
B
−
B
A
)
A
=
=
A
A
B
−
A
B
A
+
A
B
A
−
B
A
A
=
A
2
B
−
B
A
2
A
2
=
(
1
1
1
1
)
(
1
1
1
1
)
=
(
2
2
2
2
)
Let
A
′
=
A
2
⟹
S
T
(
B
)
=
A
′
B
−
B
A
′
=
T
A
′
(
B
)
⟹
I
m
(
S
T
)
,
k
e
r
(
S
T
)
are equal to
I
m
(
T
)
,
k
e
r
(
T
)
from the previous task
1d
Let
C
A
=
{
B
∈
R
n
×
n
|
A
B
=
B
A
}
Prove:
C
A
is a vector subspace of
R
n
×
n
Proof:
C
A
⊆
R
n
×
n
C
A
=
{
B
∈
R
n
×
n
|
A
B
−
B
A
=
0
}
=
k
e
r
(
T
)
Kernel of a linear transformation is always a vector subspace of the domain
⟹
C
A
is a vector subspace of
R
n
×
n
2
Let
n
∈
N
:
1
≤
m
≤
n
Let
f
(
m
)
be
m
’th derivative of
f
T
:
R
n
[
x
]
→
R
n
[
x
]
,
T
(
f
)
=
x
m
−
1
f
(
m
)
2a
Prove:
T
is a linear transformation
Proof:
Let
f
,
g
∈
R
n
[
x
]
,
α
∈
R
T
(
f
+
α
g
)
=
x
m
−
1
(
f
+
α
g
)
(
m
)
=
x
m
−
1
(
f
(
m
)
+
α
(
g
(
m
)
)
)
=
x
m
−
1
f
(
m
)
+
α
x
m
−
1
g
(
m
)
=
=
T
(
f
)
+
α
T
(
g
)
⟹
T
is a linear transformation
2b
Find basis and dimension of
I
m
(
T
)
,
k
e
r
(
T
)
Solution:
Let
f
∈
R
n
[
x
]
f
(
x
)
=
∑
k
=
0
n
a
k
x
k
(
a
k
x
k
)
(
m
)
=
{
0
k
<
m
k
!
(
k
−
m
)
!
a
k
x
k
−
m
k
≥
m
f
(
m
)
(
x
)
=
(
∑
k
=
0
n
a
k
x
k
)
(
m
)
=
∑
k
=
0
n
(
a
k
x
k
)
(
m
)
=
∑
k
=
m
n
k
!
(
k
−
m
)
!
a
k
x
k
−
m
⟹
T
(
f
)
=
x
m
−
1
(
∑
k
=
m
n
k
!
(
k
−
m
)
!
a
k
x
k
−
m
)
=
∑
k
=
m
n
k
!
(
k
−
m
)
!
a
k
x
k
−
1
=
=
m
!
a
m
x
m
−
1
+
(
m
+
1
)
!
a
m
+
1
x
m
+
⋯
+
n
!
(
n
−
m
)
!
a
n
x
n
−
1
⟹
T
(
f
)
∈
s
p
(
{
x
m
−
1
,
x
m
,
…
,
x
n
−
1
}
)
⟹
I
m
(
T
)
⊆
s
p
(
{
x
m
−
1
,
x
m
,
…
,
x
n
−
1
}
)
Let
m
−
1
≤
k
≤
n
−
1
x
k
∈
s
p
(
{
x
m
−
1
,
x
m
,
…
,
x
n
−
1
}
)
x
k
+
1
∈
R
n
[
x
]
T
(
x
k
+
1
)
=
x
m
−
1
⋅
(
k
+
1
)
!
(
k
+
1
−
m
)
!
⋅
x
k
+
1
−
m
=
(
k
+
1
)
!
(
k
+
1
−
m
)
!
x
k
⟹
T
(
(
k
+
1
−
m
)
!
(
k
+
1
)
!
x
k
+
1
)
=
x
k
⟹
x
k
∈
I
m
(
T
)
⟹
{
x
m
−
1
,
…
,
x
n
−
1
}
⊆
I
m
(
T
)
s
p
(
{
x
m
−
1
,
…
,
x
n
−
1
}
)
is a minimal vector space containing
{
x
m
−
1
,
…
,
x
n
−
1
}
⟹
s
p
(
{
x
m
−
1
,
…
,
x
n
−
1
}
)
⊆
I
m
(
T
)
⟹
I
m
(
T
)
=
s
p
(
{
x
m
−
1
,
…
,
x
n
−
1
}
)
{
x
m
−
1
,
…
,
x
n
−
1
}
is a linear independence
⟹
{
x
m
−
1
,
…
,
x
n
−
1
}
is a basis of
I
m
(
T
)
and
d
i
m
(
I
m
(
T
)
)
=
n
−
m
+
1
d
i
m
(
k
e
r
(
T
)
)
=
d
i
m
(
R
n
[
x
]
)
−
d
i
m
(
I
m
(
T
)
)
=
m
1.
{
1
,
x
,
…
,
x
m
−
1
}
is a linear independence
2.
d
i
m
(
s
p
(
{
1
,
x
,
…
,
x
m
−
1
}
)
)
=
m
=
d
i
m
(
k
e
r
(
T
)
)
⟹
{
1
,
x
,
…
,
x
m
−
1
}
is a basis of
k
e
r
(
T
)
and
d
i
m
(
k
e
r
(
T
)
)
=
m
3
Let
V
,
W
be finitely generated vector spaces over
F
Let
S
,
T
:
V
→
W
be linear transformations
3a
Prove or disprove:
k
e
r
(
S
)
∩
k
e
r
(
T
)
=
{
0
V
}
⟹
I
m
(
S
)
∩
I
m
(
T
)
=
{
0
W
}
Disproof:
Let
W
≠
{
0
}
Let
S
=
T
be invertible
⟹
1.
d
i
m
(
V
)
=
d
i
m
(
W
)
2.
k
e
r
(
T
)
=
k
e
r
(
S
)
=
k
e
r
(
S
)
∩
k
e
r
(
T
)
=
{
0
V
}
3.
I
m
(
T
)
=
I
m
(
S
)
=
I
m
(
S
)
∩
I
m
(
T
)
=
W
≠
{
0
W
}
For example:
V
=
W
=
R
3
T
=
S
=
I
d
R
3
k
e
r
(
S
)
∩
k
e
r
(
T
)
=
{
0
}
I
m
(
S
)
∩
I
m
(
T
)
=
R
3
3b
Prove:
I
m
(
T
)
⊆
I
m
(
S
)
⟺
∃
a linear transformation
R
:
V
→
V
,
T
=
S
R
Proof:
Let
I
m
(
T
)
⊆
I
m
(
S
)
⟹
∀
v
∈
V
:
∃
v
1
∈
V
:
T
(
v
)
=
S
(
v
1
)
Let
u
,
v
∈
V
,
α
∈
F
⟹
∃
u
1
,
v
1
:
S
(
u
1
)
=
T
(
u
)
,
S
(
v
1
)
=
T
(
v
)
⟹
S
(
v
1
+
α
u
1
)
=
S
(
v
1
)
+
α
S
(
u
1
)
=
T
(
v
)
+
α
T
(
u
)
=
T
(
v
+
α
u
)
Let
R
:
V
→
V
,
R
(
v
)
=
v
1
R
(
v
+
α
u
)
=
w
S
(
w
)
=
T
(
v
+
α
u
)
⟹
w
=
v
1
+
α
u
1
=
R
(
v
)
+
α
R
(
u
)
⟹
R
(
v
+
α
u
)
=
R
(
v
)
+
α
R
(
u
)
⟹
R
is a linear transformation
∀
v
∈
V
:
∃
v
1
:
T
(
v
)
=
S
(
v
1
)
=
S
(
R
(
v
)
)
⟹
T
=
S
R
(
1
)
Let
∃
a linear transformation
R
:
V
→
V
,
T
=
S
R
⟹
∀
v
∈
V
:
T
(
v
)
=
S
(
R
(
v
)
)
⟹
∀
v
∈
V
:
∃
v
1
∈
V
:
R
(
v
)
=
v
1
⟹
∀
v
∈
V
:
∃
v
1
∈
V
:
T
(
v
)
=
S
(
v
1
)
⟹
I
m
(
T
)
⊆
I
m
(
S
)
(
2
)
(
1
)
and
(
2
)
⟹
⟹
I
m
(
T
)
⊆
I
m
(
S
)
⟺
∃
a linear transformation
R
:
V
→
V
,
T
=
S
R
4
Let
T
:
V
→
V
be a linear transformation
1.
I
m
(
T
)
=
I
m
(
T
2
)
2.
k
e
r
(
T
)
=
k
e
r
(
T
2
)
3.
k
e
r
(
T
)
⊕
I
m
(
T
)
=
V
Prove:
1
⟺
2
⟺
3
Proof:
Let
I
m
(
T
)
=
I
m
(
T
2
)
⟹
d
i
m
(
I
m
(
T
)
)
=
d
i
m
(
I
m
(
T
2
)
)
⟹
d
i
m
(
k
e
r
(
T
)
)
=
d
i
m
(
V
)
−
d
i
m
(
I
m
(
T
)
)
=
d
i
m
(
V
)
−
d
i
m
(
I
m
(
T
2
)
)
=
d
i
m
(
k
e
r
(
T
2
)
)
Let
v
∈
k
e
r
(
T
)
⟹
T
(
v
)
=
0
⟹
T
(
T
(
v
)
)
=
T
(
0
)
=
0
⟹
v
∈
k
e
r
(
T
2
)
⟹
k
e
r
(
T
)
⊆
k
e
r
(
T
2
)
⟹
k
e
r
(
T
)
=
k
e
r
(
T
2
)
⟹
1
⟹
2
Let
k
e
r
(
T
)
=
k
e
r
(
T
2
)
⟹
d
i
m
(
k
e
r
(
T
)
)
=
d
i
m
(
k
e
r
(
T
2
)
)
⟹
d
i
m
(
I
m
(
T
)
)
=
d
i
m
(
V
)
−
d
i
m
(
k
e
r
(
T
)
)
=
d
i
m
(
V
)
−
d
i
m
(
k
e
r
(
T
2
)
)
=
d
i
m
(
I
m
(
T
2
)
)
Let
v
∈
I
m
(
T
2
)
⟹
∃
u
∈
V
:
T
(
T
(
u
)
)
=
v
T
(
u
)
∈
V
⟹
v
∈
I
m
(
T
)
⟹
I
m
(
T
2
)
⊆
I
m
(
T
)
⟹
I
m
(
T
)
=
I
m
(
T
2
)
⟹
2
⟹
1
⟹
1
⟺
2
Let
k
e
r
(
T
)
=
k
e
r
(
T
2
)
k
e
r
(
T
)
,
I
m
(
T
)
⊆
V
⟹
k
e
r
(
T
)
+
I
m
(
T
)
⊆
V
Let
v
∈
k
e
r
(
T
)
∩
I
m
(
T
)
⟹
T
(
v
)
=
0
∧
∃
u
∈
V
:
T
(
u
)
=
v
⟹
T
(
T
(
u
)
)
=
0
⟹
u
∈
k
e
r
(
T
2
)
⟹
u
∈
k
e
r
(
T
)
⟹
T
(
u
)
=
0
⟹
v
=
0
⟹
k
e
r
(
T
)
∩
I
m
(
T
)
=
{
0
}
⟹
d
i
m
(
k
e
r
(
T
)
∩
I
m
(
T
)
)
=
0
⟹
d
i
m
(
k
e
r
(
T
)
+
I
m
(
T
)
)
=
d
i
m
(
k
e
r
(
T
)
)
+
d
i
m
(
I
m
(
T
)
)
=
d
i
m
(
V
)
⟹
k
e
r
(
T
)
+
I
m
(
T
)
=
V
∧
k
e
r
(
T
)
∩
I
m
(
T
)
=
{
0
}
⟹
k
e
r
(
T
)
⊕
I
m
(
T
)
=
V
⟹
2
⟹
3
Let
k
e
r
(
T
)
⊕
I
m
(
T
)
=
V
Let
v
∈
k
e
r
(
T
2
)
⟹
T
2
(
v
)
=
T
(
T
(
v
)
)
=
0
Let
w
=
T
(
v
)
⟹
w
∈
I
m
(
T
)
T
(
w
)
=
0
⟹
w
∈
k
e
r
(
T
)
⟹
w
∈
k
e
r
(
T
)
∩
I
m
(
T
)
⟹
w
=
0
⟹
T
(
v
)
=
0
⟹
v
∈
k
e
r
(
T
)
⟹
k
e
r
(
T
2
)
⊆
k
e
r
(
T
)
As shown earlier,
k
e
r
(
T
)
⊆
k
e
r
(
T
2
⟹
k
e
r
(
T
)
=
k
e
r
(
T
2
)
⟹
3
⟹
2
⟹
2
⟺
3
⟹
1
⟺
2
⟺
3
5a
Prove or disprove:
∃
different non-invertible linear transformations
S
,
T
:
R
3
→
R
3
such that:
I
m
(
S
)
=
I
m
(
T
)
,
k
e
r
(
S
)
=
k
e
r
(
T
)
Proof:
A
=
(
0
0
0
0
1
0
0
0
1
)
,
B
=
(
0
0
0
0
−
1
0
0
0
1
)
T
(
v
)
=
A
v
,
S
(
v
)
=
B
v
⟹
T
(
(
a
b
c
)
)
=
(
0
b
c
)
,
S
(
(
a
b
c
)
)
=
(
0
−
b
c
)
I
m
(
T
)
=
I
m
(
S
)
=
s
p
(
{
(
0
1
0
)
,
(
0
0
1
)
}
)
k
e
r
(
T
)
=
k
e
r
(
S
)
=
s
p
(
{
(
1
0
0
)
}
)
5b
Prove or disprove:
∃
non-invertible linear transformations
S
,
T
:
R
3
→
R
3
such that:
k
e
r
(
S
)
=
I
m
(
T
)
,
k
e
r
(
T
)
=
I
m
(
S
)
Proof:
A
=
(
0
0
0
0
1
0
0
0
1
)
,
B
=
(
1
0
0
0
0
0
0
0
0
)
T
(
v
)
=
A
v
,
S
(
v
)
=
B
v
⟹
T
(
(
a
b
c
)
)
=
(
0
b
c
)
,
S
(
(
a
b
c
)
)
=
(
a
0
0
)
I
m
(
T
)
=
k
e
r
(
S
)
=
s
p
(
{
(
0
1
0
)
,
(
0
0
1
)
}
)
I
m
(
S
)
=
k
e
r
(
T
)
=
s
p
(
{
(
1
0
0
)
}
)