Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 11
1
Let
V
=
R
2
[
x
]
over
R
Let
S
be a standard basis of
V
Let
B
=
{
1
,
1
+
x
,
1
+
x
+
x
2
}
basis of
V
1a
Find
[
I
]
S
B
Solution:
[
I
]
S
B
=
(
[
1
]
S
|
|
[
1
+
x
]
S
|
|
[
1
+
x
+
x
2
]
S
|
|
)
⟹
[
I
]
S
B
=
(
1
1
1
0
1
1
0
0
1
)
1b
Find
[
v
]
B
for all
v
∈
V
Solution:
[
I
]
B
S
=
(
[
I
]
S
B
)
−
1
=
(
1
1
1
0
1
1
0
0
1
)
−
1
=
R
2
−
R
3
R
1
−
R
2
(
1
−
1
0
0
1
−
1
0
0
1
)
⟹
[
1
]
B
=
(
1
0
0
)
,
[
x
]
B
=
(
−
1
1
0
)
,
[
x
2
]
B
=
(
0
−
1
1
)
⟹
[
v
]
B
=
[
a
+
b
x
+
c
x
2
]
B
=
a
[
1
]
B
+
b
[
x
]
B
+
c
[
x
2
]
B
⟹
[
v
]
B
=
a
(
1
0
0
)
+
b
(
−
1
1
0
)
+
c
(
0
−
1
1
)
=
(
a
−
b
b
−
c
c
)
2
Let
V
be a vector space over
F
Let
B
be a basis of
V
Let
{
v
1
,
…
,
v
n
}
⊆
V
Prove:
{
v
1
,
…
,
v
n
}
is a linear independence
⟺
{
[
v
1
]
B
,
…
,
[
v
n
]
B
}
is a linear independence
Proof:
Let
{
v
1
,
…
,
v
n
}
be a linear dependence
⟹
∃
{
α
1
,
…
,
α
n
}
≠
{
0
}
:
∑
i
=
1
n
α
i
v
i
=
0
∑
i
=
1
n
α
i
v
i
=
0
⟹
[
∑
i
=
1
n
α
i
v
i
]
B
=
0
⟹
∑
i
=
1
n
α
i
[
v
i
]
B
=
0
⟹
{
[
v
1
]
B
,
…
,
[
v
n
]
B
}
is a linear dependence
Let
{
[
v
1
]
B
,
…
,
[
v
n
]
B
}
be a linear dependence
⟹
∃
{
α
1
,
α
2
,
…
,
α
n
}
≠
{
0
}
:
∑
i
=
1
n
α
i
[
v
i
]
B
=
0
∑
i
=
1
n
α
i
[
v
i
]
B
=
0
⟹
[
∑
i
=
1
n
α
i
v
i
]
B
=
0
⟹
∑
i
=
1
n
α
i
v
i
=
0
⟹
{
v
1
,
…
,
v
n
}
is a linear dependence
⟹
{
v
1
,
…
,
v
n
}
is a linear dependence
⟺
{
[
v
1
]
B
,
…
,
[
v
n
]
B
}
is a linear dependence
{
v
1
,
…
,
v
n
}
is a linear independence
⟺
{
[
v
1
]
B
,
…
,
[
v
n
]
B
}
is a linear independence
Another way to prove it:
[
]
B
is an invertible linear transformation
⟹
{
v
1
,
…
,
v
n
}
is linearly independent
⟺
{
[
v
1
]
B
,
…
,
[
v
n
]
B
}
is linearly independent
3
Let
V
=
R
3
over
R
Let
B
=
{
(
1
0
0
)
,
(
1
1
0
)
,
(
1
1
1
)
}
,
C
=
{
(
1
0
1
)
,
(
0
1
0
)
,
(
1
1
0
)
}
be bases of
V
Find
[
I
]
C
B
Solution:
[
I
]
C
B
=
[
I
]
C
S
[
I
]
S
B
[
I
]
S
B
=
(
b
1
|
|
b
2
|
|
b
3
|
|
)
=
(
1
1
1
0
1
1
0
0
1
)
[
I
]
S
C
=
(
1
0
1
0
1
1
1
0
0
)
(
1
0
1
1
0
0
0
1
1
0
1
0
1
0
0
0
0
1
)
→
(
1
0
1
1
0
0
0
1
1
0
1
0
0
0
1
1
0
−
1
)
→
(
1
0
0
0
0
1
0
1
0
−
1
1
1
0
0
1
1
0
−
1
)
[
I
]
C
S
=
(
[
I
]
S
C
)
−
1
=
(
1
0
1
0
1
1
1
0
0
)
−
1
=
(
0
0
1
−
1
1
1
1
0
−
1
)
⟹
[
I
]
C
B
=
(
0
0
1
−
1
1
1
1
0
−
1
)
(
1
1
1
0
1
1
0
0
1
)
=
(
0
0
1
−
1
0
1
1
1
0
)
4
Let
V
be a vector space
Let
B
=
{
v
1
,
…
,
v
n
}
be a basis of
V
Let
C
=
{
w
1
,
…
,
w
n
}
be a basis of
V
such that
∀
i
∈
[
1
,
n
]
:
w
i
=
∑
k
=
1
i
v
k
Find
[
I
]
B
C
Solution:
[
I
]
B
C
=
(
[
I
(
w
1
)
]
B
|
|
…
[
I
(
w
n
)
]
B
|
|
)
I
(
w
1
)
=
I
(
∑
k
=
1
1
v
k
)
=
I
(
v
1
)
=
v
1
⟹
[
I
(
w
1
)
]
B
=
[
v
1
]
B
=
e
1
I
(
w
2
)
=
I
(
∑
k
=
1
2
v
k
)
=
I
(
v
1
+
v
2
)
=
v
1
+
v
2
⟹
[
I
(
w
2
)
]
B
=
[
v
1
+
v
2
]
B
=
e
1
+
e
2
I
(
w
i
)
=
I
(
∑
k
=
1
i
v
k
)
⟹
[
I
(
w
i
)
]
B
=
∑
k
=
1
i
e
k
⟹
[
I
]
B
C
=
(
e
1
∑
k
=
1
2
e
k
…
∑
k
=
1
n
e
k
)
=
(
1
1
1
…
1
0
1
1
…
1
0
0
1
…
1
⋮
⋮
⋱
⋱
⋮
0
0
…
0
1
)
=
{
1
i
≤
j
0
i
>
j
5a
Let
V
be a vector space over
F
,
d
i
m
(
V
)
=
n
Let
A
∈
F
n
×
n
be invertible
Prove:
∃
B
,
C
bases of
V
:
[
I
]
C
B
=
A
Proof:
Let
A
=
(
a
11
a
12
…
a
1
n
a
21
a
22
…
a
2
n
⋮
⋮
⋱
⋮
a
n
1
a
n
2
…
a
n
n
)
Let
C
=
{
v
1
,
…
,
v
n
}
be a basis of
V
Let
B
=
{
w
1
,
…
,
w
n
}
such that
∀
i
∈
[
1
,
n
]
:
w
i
=
∑
k
=
1
n
a
k
i
v
k
⟹
∀
i
∈
[
1
,
n
]
:
[
w
i
]
C
=
[
∑
k
=
1
n
a
k
i
v
k
]
C
=
(
a
1
i
a
2
i
⋮
a
n
i
)
=
C
i
(
A
)
A
is invertible
⟹
{
C
1
(
A
)
,
…
,
C
n
(
A
)
}
is a linear independence
⟹
{
[
w
1
]
C
,
…
,
[
w
n
]
C
}
is a linear independence
⟹
B
is a linear independence
B
⊆
V
,
B
is a linear independence
,
|
B
|
=
d
i
m
(
V
)
⟹
B
is a basis of
V
and
[
I
]
C
B
=
(
[
w
1
]
C
|
|
…
[
w
n
]
C
|
|
)
=
(
C
1
(
A
)
|
|
…
C
n
(
A
)
|
|
)
=
A
5b
Let
V
be a vector space over
F
,
d
i
m
(
V
)
=
n
Let
B
,
C
,
D
be bases of
V
Prove or disprove:
[
I
]
C
B
=
[
I
]
C
D
⟹
B
=
D
Proof:
[
I
]
D
B
=
[
I
]
D
C
[
I
]
C
B
=
(
[
I
]
C
D
)
−
1
[
I
]
C
B
=
(
[
I
]
C
B
)
−
1
[
I
]
C
B
=
I
⟹
[
I
]
B
B
=
I
=
[
I
]
D
B
Transformation matrix is unique
⟹
B
=
D