Linear-1 11

1

Let V=R2[x] over RLet S be a standard basis of VLet B={1,1+x,1+x+x2} basis of V

1a

Find [I]SBSolution:[I]SB=([1]S||[1+x]S||[1+x+x2]S||)[I]SB=(111011001)

1b

Find [v]B for all vVSolution:[I]BS=([I]SB)1=(111011001)1=R2R3R1R2(110011001)[1]B=(100),[x]B=(110),[x2]B=(011)[v]B=[a+bx+cx2]B=a[1]B+b[x]B+c[x2]B[v]B=a(100)+b(110)+c(011)=(abbcc)

2

Let V be a vector space over FLet B be a basis of VLet {v1,,vn}VProve: {v1,,vn} is a linear independence{[v1]B,,[vn]B} is a linear independenceProof:Let {v1,,vn} be a linear dependence{α1,,αn}{0}:i=1nαivi=0i=1nαivi=0[i=1nαivi]B=0i=1nαi[vi]B=0{[v1]B,,[vn]B} is a linear dependenceLet {[v1]B,,[vn]B} be a linear dependence{α1,α2,,αn}{0}:i=1nαi[vi]B=0i=1nαi[vi]B=0[i=1nαivi]B=0i=1nαivi=0{v1,,vn} is a linear dependence{v1,,vn} is a linear dependence{[v1]B,,[vn]B} is a linear dependence{v1,,vn} is a linear independence{[v1]B,,[vn]B} is a linear independenceAnother way to prove it:[]B is an invertible linear transformation{v1,,vn} is linearly independent{[v1]B,,[vn]B} is linearly independent

3

Let V=R3 over RLet B={(100),(110),(111)},C={(101),(010),(110)} be bases of VFind [I]CBSolution:[I]CB=[I]CS[I]SB[I]SB=(b1||b2||b3||)=(111011001)[I]SC=(101011100)(101100011010100001)(101100011010001101)(100001010111001101)[I]CS=([I]SC)1=(101011100)1=(001111101)[I]CB=(001111101)(111011001)=(001101110)

4

Let V be a vector spaceLet B={v1,,vn} be a basis of VLet C={w1,,wn} be a basis of V such thati[1,n]:wi=k=1ivkFind [I]BCSolution:[I]BC=([I(w1)]B||[I(wn)]B||)I(w1)=I(k=11vk)=I(v1)=v1[I(w1)]B=[v1]B=e1I(w2)=I(k=12vk)=I(v1+v2)=v1+v2[I(w2)]B=[v1+v2]B=e1+e2I(wi)=I(k=1ivk)[I(wi)]B=k=1iek[I]BC=(e1k=12ekk=1nek)=(1111011100110001)={1ij0i>j

5a

Let V be a vector space over F,dim(V)=nLet AFn×n be invertibleProve: B,C bases of V:[I]CB=AProof:Let A=(a11a12a1na21a22a2nan1an2ann)Let C={v1,,vn} be a basis of VLet B={w1,,wn} such that i[1,n]:wi=k=1nakivki[1,n]:[wi]C=[k=1nakivk]C=(a1ia2iani)=Ci(A)A is invertible{C1(A),,Cn(A)} is a linear independence{[w1]C,,[wn]C} is a linear independenceB is a linear independenceBV,B is a linear independence,|B|=dim(V)B is a basis of Vand [I]CB=([w1]C||[wn]C||)=(C1(A)||Cn(A)||)=A

5b

Let V be a vector space over F,dim(V)=nLet B,C,D be bases of VProve or disprove: [I]CB=[I]CDB=DProof:[I]DB=[I]DC[I]CB=([I]CD)1[I]CB=([I]CB)1[I]CB=I[I]BB=I=[I]DBTransformation matrix is uniqueB=D