Linear-1 12

1

B={v1=(101),v2=(210),v3=(031)} is a basis of R3C={u1=(021),u2=(202),u3=(121)} is a basis of R3E is a standard basis of R3

1a

Find [I]EB,[I]ECSolution:[I]EB=([v1]E||[v2]E||[v3]E||)=(v1||v2||v3||)=(120013101)In a similar way: [I]EC=(u1||u2||u3||)=(021202121)[I]EB=(120013101),[I]EC=(021202121)

1b

Find [I]CESolution:[I]CE=([I]EC)1=(021202121)1(021100202010121001)R2=R2+2R3R3=R3R1R3(121001040012021100)R3=12(2R3R2)R2=14R2(121001010014120011121)R1=R1+R3R1=R1+2R2(100101010014120011121)[I]CE=(101014121121)

1c

Find [I]CBSolution:[I]CB=[I]CE[I]EB=(101014121121)(120013101)=(02112145403252)[I]CB=(02112145403252)

2

Let V,W be vector spaces over RLet T:VW be a linear transformationLet B={v1,v2,v3,v4} be a basis of VLet C={u1,u2,u3} be a basis of W[T]CB=(316910262143)Find bases of ker(T) and Im(T) via vectors of B and CSolution:[ker(T)]B=N([T]CB)(316910262143)(102601090109)(102601090000)Let x3=s,x4=t{x1=2s6tx2=9tx3=sx4=tN([T]CB)=sp({(2010),(6901)})ker(T)=sp({2v1+v3,6v1+9v2+v4})[Im(T)]C=C([T]CB)=sp({(312),(101)})ker(T)=sp({3u1+u2+2u3,u1+u3})

3

Let V,W be vector spaces over FLet T:VW be a linear transformationLet B be a basis of VLet C be a basis of WLet A1=[T]CBFm×nLet A2,A3Fm×n

3a

Prove: C basis of W:[T]CB=A2A1 is row-equivalent to A2Proof:Let C basis of W:[T]CB=A2A1=[T]CB=[I]CC[T]CB=[I]CCA2[I]CC is invertibleA1 is row-equivalent to A2Let A1 be row-equivalent to A2A1=XA2 where X is invertibleX is invertible,XFm×mC basis of W:[I]CC=X[T]CB=[I]CCA2[I]CC[T]CB=[I]CC[I]CCA2=A2[T]CB=A2

3b

Prove: B basis of V:[T]CB=A3A1T is row-equivalent to A3TProof:Let B basis of V:[T]CB=A3[T]CB=[T]CB[I]BB([T]CB)T=([I]BB)T([T]BB)TA1T=([I]BB)TA3T[I]BB is invertible([I]BB)T is invertibleA1T is row-equivalent to A3TLet A1T be row-equivalent to A3TA1T=XA3TA1=A3XT where X is invertibleX is invertible,XFn×nXT is invertible,XTFn×nB basis of V:[I]BB=XT[T]CB=A3[I]BB[T]CB[I]BB=A3[I]BB[I]BB=A3[T]CB=A3

4

B={(101),(011),(001)}C={(100),(011),(012)}Let T:R3R3 be a linear transformation[T]CB=(1000a1a21a) where aR is a parameter

4a

Find all values of a such that T is invertibleSolution:T is invertible [T]CB is invertiblerank([T]CB)=3(1000a1a21a)(1000a101a)(10001a0a1)(10001a001a2)rank([T]CB)=31a20(1a)(1+a)0{a1a1

4b

For a=3 find T1((xyz))Solution:a=3[T]CB=(100031113)[T((101))]C=(101)T((101))=(112)[T((011))]C=(031)T((011))=(045)[T((001))]C=(013)T((001))=(047)}[T]EB=(100144257)[T1(v)]E=[T1]EE[v]E=([T]EE)1[v]E=([T]EB[I]BE)1[v]E[(100)]B=(101),[(010)]B=(011),[(001)]B=(001)[I]BE=(100010111)[T]EB[I]BE=(100144257)(100010111)=(100304527)(100100304010527001)(100100027501004310)(1001000201474100134140)(10010001018781200134140)([T]EB[I]BE)1[v]E=(10018781234140)(xyz)=(x18x+78y12z34x+14y)T1((xyz))=(x18x+78y12z34x+14y)

4c

For a=1 find bases of ker(T) and Im(T)Solution:[T]CB=(100011111)[ker(T)]B=N([T]CB)(100011111)4a(100011000){x1=0x2=sx3=sN([T]CB)=sp({(011)})ker(T)=sp({(010)})[ker(T)]C=C([T]CB)=sp({(101),(011)})ker(T)=sp({(112),(023)})

5

Let T:R2×2R2×2,T(A)=AATB={(1000),(0100),(0010),(0001)}C={(1000),(0110),(0001),(0110)}B,C are bases of R2×2

5a

Find [T]CB,[T]BCSolution:B is a standard basis,B=E[T]BB=[T]EET(e1)=T(e4)=0T(e2)=T(e3)=(0110)[T]BB=[T]EE=(0000011001100000)T((1000))=T((0110))=T((0001))=0T((0110))=(0220)[T]BC=[T]EC=(0000000200020000)

5b

Find basis and dimension of Im(T),ker(T)Solution:[Im(T)]E=C([T]EC)=sp({(0220)})Im(T)=sp({(0220)}){(0220)} is a linear independence{(0220)} is a basis of Im(T) and dim(Im(T))=1[ker(T)]E=N([T]EE)(0000011001100000)(0000011000000000){x1=ux2=tx3=tx4=sN([T]EE)=sp({(1000),(0110),(0001)})ker(T)=sp({(1000),(0110),(0001)}){(1000),(0110),(0001)} is a linear independence{(1000),(0110),(0001)} is a basis of ker(T) and dim(ker(T))=3

5c

Find [T2]CCSolution:T2(A)=T(A)(T(A))T=(AAT)(AAT)T=AATAT+A==2A2AT=2T(A)Let C={c1,c2,c3,c4}T2(c1)=T2(c2)=T2(c3)=0T2(c4)=2T(c4)=(0440)[T2(c4)]C=(0004)[T2]CC=(0000000000000004)