Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 12
1
B
=
{
v
1
=
(
1
0
1
)
,
v
2
=
(
2
1
0
)
,
v
3
=
(
0
3
1
)
}
is a basis of
R
3
C
=
{
u
1
=
(
0
2
−
1
)
,
u
2
=
(
2
0
2
)
,
u
3
=
(
1
−
2
1
)
}
is a basis of
R
3
E
is a standard basis of
R
3
1a
Find
[
I
]
E
B
,
[
I
]
E
C
Solution:
[
I
]
E
B
=
(
[
v
1
]
E
|
|
[
v
2
]
E
|
|
[
v
3
]
E
|
|
)
=
(
v
1
|
|
v
2
|
|
v
3
|
|
)
=
(
1
2
0
0
1
3
1
0
1
)
In a similar way:
[
I
]
E
C
=
(
u
1
|
|
u
2
|
|
u
3
|
|
)
=
(
0
2
1
2
0
−
2
−
1
2
1
)
⟹
[
I
]
E
B
=
(
1
2
0
0
1
3
1
0
1
)
,
[
I
]
E
C
=
(
0
2
1
2
0
−
2
−
1
2
1
)
1b
Find
[
I
]
C
E
Solution:
[
I
]
C
E
=
(
[
I
]
E
C
)
−
1
=
(
0
2
1
2
0
−
2
−
1
2
1
)
−
1
(
0
2
1
1
0
0
2
0
−
2
0
1
0
−
1
2
1
0
0
1
)
→
R
2
=
R
2
+
2
R
3
R
3
=
−
R
3
R
1
↔
R
3
(
1
−
2
−
1
0
0
−
1
0
4
0
0
1
2
0
2
1
1
0
0
)
→
R
3
=
1
2
(
2
R
3
−
R
2
)
R
2
=
1
4
R
2
(
1
−
2
−
1
0
0
−
1
0
1
0
0
1
4
1
2
0
0
1
1
−
1
2
−
1
)
→
R
1
=
R
1
+
R
3
R
1
=
R
1
+
2
R
2
(
1
0
0
1
0
−
1
0
1
0
0
1
4
1
2
0
0
1
1
−
1
2
−
1
)
⟹
[
I
]
C
E
=
(
1
0
−
1
0
1
4
1
2
1
−
1
2
−
1
)
1c
Find
[
I
]
C
B
Solution:
[
I
]
C
B
=
[
I
]
C
E
[
I
]
E
B
=
(
1
0
−
1
0
1
4
1
2
1
−
1
2
−
1
)
(
1
2
0
0
1
3
1
0
1
)
=
(
0
2
−
1
1
2
1
4
5
4
0
3
2
−
5
2
)
⟹
[
I
]
C
B
=
(
0
2
−
1
1
2
1
4
5
4
0
3
2
−
5
2
)
2
Let
V
,
W
be vector spaces over
R
Let
T
:
V
→
W
be a linear transformation
Let
B
=
{
v
1
,
v
2
,
v
3
,
v
4
}
be a basis of
V
Let
C
=
{
u
1
,
u
2
,
u
3
}
be a basis of
W
[
T
]
C
B
=
(
3
1
6
9
1
0
2
6
2
1
4
3
)
Find bases of
k
e
r
(
T
)
and
I
m
(
T
)
via vectors of
B
and
C
Solution:
[
k
e
r
(
T
)
]
B
=
N
(
[
T
]
C
B
)
(
3
1
6
9
1
0
2
6
2
1
4
3
)
→
(
1
0
2
6
0
1
0
−
9
0
1
0
−
9
)
→
(
1
0
2
6
0
1
0
−
9
0
0
0
0
)
Let
x
3
=
s
,
x
4
=
t
⟹
{
x
1
=
−
2
s
−
6
t
x
2
=
9
t
x
3
=
s
x
4
=
t
⟹
N
(
[
T
]
C
B
)
=
s
p
(
{
(
−
2
0
1
0
)
,
(
−
6
9
0
1
)
}
)
⟹
k
e
r
(
T
)
=
s
p
(
{
−
2
v
1
+
v
3
,
−
6
v
1
+
9
v
2
+
v
4
}
)
[
I
m
(
T
)
]
C
=
C
(
[
T
]
C
B
)
=
s
p
(
{
(
3
1
2
)
,
(
1
0
1
)
}
)
⟹
k
e
r
(
T
)
=
s
p
(
{
3
u
1
+
u
2
+
2
u
3
,
u
1
+
u
3
}
)
3
Let
V
,
W
be vector spaces over
F
Let
T
:
V
→
W
be a linear transformation
Let
B
be a basis of
V
Let
C
be a basis of
W
Let
A
1
=
[
T
]
C
B
∈
F
m
×
n
Let
A
2
,
A
3
∈
F
m
×
n
3a
Prove:
∃
C
′
basis of
W
:
[
T
]
C
′
B
=
A
2
⟺
A
1
is row-equivalent to
A
2
Proof:
Let
∃
C
′
basis of
W
:
[
T
]
C
′
B
=
A
2
A
1
=
[
T
]
C
B
=
[
I
]
C
C
′
⋅
[
T
]
C
′
B
=
[
I
]
C
C
′
⋅
A
2
[
I
]
C
C
′
is invertible
⟹
A
1
is row-equivalent to
A
2
Let
A
1
be row-equivalent to
A
2
⟹
A
1
=
X
⋅
A
2
where
X
is invertible
X
is invertible
,
X
∈
F
m
×
m
⟹
∃
C
′
basis of
W
:
[
I
]
C
C
′
=
X
[
T
]
C
B
=
[
I
]
C
C
′
⋅
A
2
⟹
[
I
]
C
′
C
⋅
[
T
]
C
B
=
[
I
]
C
′
C
⋅
[
I
]
C
C
′
⋅
A
2
=
A
2
⟹
[
T
]
C
′
B
=
A
2
3b
Prove:
∃
B
′
basis of
V
:
[
T
]
C
B
′
=
A
3
⟺
A
1
T
is row-equivalent to
A
3
T
Proof:
Let
∃
B
′
basis of
V
:
[
T
]
C
B
′
=
A
3
[
T
]
C
B
=
[
T
]
C
B
′
⋅
[
I
]
B
′
B
⟹
(
[
T
]
C
B
)
T
=
(
[
I
]
B
′
B
)
T
(
[
T
]
B
B
′
)
T
⟹
A
1
T
=
(
[
I
]
B
′
B
)
T
A
3
T
[
I
]
B
′
B
is invertible
⟹
(
[
I
]
B
′
B
)
T
is invertible
⟹
A
1
T
is row-equivalent to
A
3
T
Let
A
1
T
be row-equivalent to
A
3
T
⟹
A
1
T
=
X
⋅
A
3
T
⟹
A
1
=
A
3
⋅
X
T
where
X
is invertible
X
is invertible
,
X
∈
F
n
×
n
⟹
X
T
is invertible
,
X
T
∈
F
n
×
n
⟹
∃
B
′
basis of
V
:
[
I
]
B
′
B
=
X
T
[
T
]
C
B
=
A
3
⋅
[
I
]
B
′
B
⟹
[
T
]
C
B
⋅
[
I
]
B
B
′
=
A
3
⋅
[
I
]
B
′
B
⋅
[
I
]
B
B
′
=
A
3
⟹
[
T
]
C
B
′
=
A
3
4
B
=
{
(
1
0
1
)
,
(
0
1
1
)
,
(
0
0
1
)
}
C
=
{
(
1
0
0
)
,
(
0
1
1
)
,
(
0
1
2
)
}
Let
T
:
R
3
→
R
3
be a linear transformation
[
T
]
C
B
=
(
1
0
0
0
a
1
a
−
2
1
a
)
where
a
∈
R
is a parameter
4a
Find all values of
a
such that
T
is invertible
Solution:
T
is invertible
⟺
[
T
]
C
B
is invertible
⟺
r
a
n
k
(
[
T
]
C
B
)
=
3
(
1
0
0
0
a
1
a
−
2
1
a
)
→
(
1
0
0
0
a
1
0
1
a
)
→
(
1
0
0
0
1
a
0
a
1
)
→
(
1
0
0
0
1
a
0
0
1
−
a
2
)
r
a
n
k
(
[
T
]
C
B
)
=
3
⟺
1
−
a
2
≠
0
⟺
(
1
−
a
)
(
1
+
a
)
≠
0
⟺
{
a
≠
1
a
≠
−
1
4b
For
a
=
3
find
T
−
1
(
(
x
y
z
)
)
Solution:
a
=
3
⟹
[
T
]
C
B
=
(
1
0
0
0
3
1
1
1
3
)
[
T
(
(
1
0
1
)
)
]
C
=
(
1
0
1
)
⟹
T
(
(
1
0
1
)
)
=
(
1
1
2
)
[
T
(
(
0
1
1
)
)
]
C
=
(
0
3
1
)
⟹
T
(
(
0
1
1
)
)
=
(
0
4
5
)
[
T
(
(
0
0
1
)
)
]
C
=
(
0
1
3
)
⟹
T
(
(
0
0
1
)
)
=
(
0
4
7
)
}
⟹
[
T
]
E
B
=
(
1
0
0
1
4
4
2
5
7
)
[
T
−
1
(
v
)
]
E
=
[
T
−
1
]
E
E
[
v
]
E
=
(
[
T
]
E
E
)
−
1
[
v
]
E
=
(
[
T
]
E
B
[
I
]
B
E
)
−
1
[
v
]
E
[
(
1
0
0
)
]
B
=
(
1
0
−
1
)
,
[
(
0
1
0
)
]
B
=
(
0
1
−
1
)
,
[
(
0
0
1
)
]
B
=
(
0
0
1
)
⟹
[
I
]
B
E
=
(
1
0
0
0
1
0
−
1
−
1
1
)
[
T
]
E
B
[
I
]
B
E
=
(
1
0
0
1
4
4
2
5
7
)
(
1
0
0
0
1
0
−
1
−
1
1
)
=
(
1
0
0
−
3
0
4
−
5
−
2
7
)
(
1
0
0
1
0
0
−
3
0
4
0
1
0
−
5
−
2
7
0
0
1
)
→
(
1
0
0
1
0
0
0
−
2
7
5
0
1
0
0
4
3
1
0
)
→
(
1
0
0
1
0
0
0
2
0
1
4
7
4
−
1
0
0
1
3
4
1
4
0
)
→
(
1
0
0
1
0
0
0
1
0
1
8
7
8
−
1
2
0
0
1
3
4
1
4
0
)
⟹
(
[
T
]
E
B
[
I
]
B
E
)
−
1
[
v
]
E
=
(
1
0
0
1
8
7
8
−
1
2
3
4
1
4
0
)
(
x
y
z
)
=
(
x
1
8
x
+
7
8
y
−
1
2
z
3
4
x
+
1
4
y
)
⟹
T
−
1
(
(
x
y
z
)
)
=
(
x
1
8
x
+
7
8
y
−
1
2
z
3
4
x
+
1
4
y
)
4c
For
a
=
1
find bases of
k
e
r
(
T
)
and
I
m
(
T
)
Solution:
[
T
]
C
B
=
(
1
0
0
0
1
1
−
1
1
1
)
[
k
e
r
(
T
)
]
B
=
N
(
[
T
]
C
B
)
(
1
0
0
0
1
1
−
1
1
1
)
→
4a
(
1
0
0
0
1
1
0
0
0
)
⟹
{
x
1
=
0
x
2
=
−
s
x
3
=
s
⟹
N
(
[
T
]
C
B
)
=
s
p
(
{
(
0
−
1
1
)
}
)
⟹
k
e
r
(
T
)
=
s
p
(
{
(
0
−
1
0
)
}
)
[
k
e
r
(
T
)
]
C
=
C
(
[
T
]
C
B
)
=
s
p
(
{
(
1
0
−
1
)
,
(
0
1
1
)
}
)
⟹
k
e
r
(
T
)
=
s
p
(
{
(
1
−
1
−
2
)
,
(
0
2
3
)
}
)
5
Let
T
:
R
2
×
2
→
R
2
×
2
,
T
(
A
)
=
A
−
A
T
B
=
{
(
1
0
0
0
)
,
(
0
1
0
0
)
,
(
0
0
1
0
)
,
(
0
0
0
1
)
}
C
=
{
(
1
0
0
0
)
,
(
0
1
1
0
)
,
(
0
0
0
1
)
,
(
0
−
1
1
0
)
}
B
,
C
are bases of
R
2
×
2
5a
Find
[
T
]
C
B
,
[
T
]
B
C
Solution:
B
is a standard basis
,
B
=
E
⟹
[
T
]
B
B
=
[
T
]
E
E
T
(
e
1
)
=
T
(
e
4
)
=
0
T
(
e
2
)
=
−
T
(
e
3
)
=
(
0
1
−
1
0
)
⟹
[
T
]
B
B
=
[
T
]
E
E
=
(
0
0
0
0
0
1
−
1
0
0
−
1
1
0
0
0
0
0
)
T
(
(
1
0
0
0
)
)
=
T
(
(
0
1
1
0
)
)
=
T
(
(
0
0
0
1
)
)
=
0
T
(
(
0
−
1
1
0
)
)
=
(
0
−
2
2
0
)
⟹
[
T
]
B
C
=
[
T
]
E
C
=
(
0
0
0
0
0
0
0
−
2
0
0
0
2
0
0
0
0
)
5b
Find basis and dimension of
I
m
(
T
)
,
k
e
r
(
T
)
Solution:
[
I
m
(
T
)
]
E
=
C
(
[
T
]
E
C
)
=
s
p
(
{
(
0
−
2
2
0
)
}
)
⟹
I
m
(
T
)
=
s
p
(
{
(
0
−
2
2
0
)
}
)
{
(
0
−
2
2
0
)
}
is a linear independence
⟹
{
(
0
−
2
2
0
)
}
is a basis of
I
m
(
T
)
and
d
i
m
(
I
m
(
T
)
)
=
1
[
k
e
r
(
T
)
]
E
=
N
(
[
T
]
E
E
)
(
0
0
0
0
0
1
−
1
0
0
−
1
1
0
0
0
0
0
)
→
(
0
0
0
0
0
1
−
1
0
0
0
0
0
0
0
0
0
)
⟹
{
x
1
=
u
x
2
=
t
x
3
=
t
x
4
=
s
⟹
N
(
[
T
]
E
E
)
=
s
p
(
{
(
1
0
0
0
)
,
(
0
1
1
0
)
,
(
0
0
0
1
)
}
)
⟹
k
e
r
(
T
)
=
s
p
(
{
(
1
0
0
0
)
,
(
0
1
1
0
)
,
(
0
0
0
1
)
}
)
{
(
1
0
0
0
)
,
(
0
1
1
0
)
,
(
0
0
0
1
)
}
is a linear independence
⟹
{
(
1
0
0
0
)
,
(
0
1
1
0
)
,
(
0
0
0
1
)
}
is a basis of
k
e
r
(
T
)
and
d
i
m
(
k
e
r
(
T
)
)
=
3
5c
Find
[
T
2
]
C
C
Solution:
T
2
(
A
)
=
T
(
A
)
−
(
T
(
A
)
)
T
=
(
A
−
A
T
)
−
(
A
−
A
T
)
T
=
A
−
A
T
−
A
T
+
A
=
=
2
A
−
2
A
T
=
2
T
(
A
)
Let
C
=
{
c
1
,
c
2
,
c
3
,
c
4
}
T
2
(
c
1
)
=
T
2
(
c
2
)
=
T
2
(
c
3
)
=
0
T
2
(
c
4
)
=
2
T
(
c
4
)
=
(
0
−
4
4
0
)
⟹
[
T
2
(
c
4
)
]
C
=
(
0
0
0
4
)
⟹
[
T
2
]
C
C
=
(
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
)