Linear-1 2

1a

A=(345548929),B=(929548345)

1b

AB=(345548929)×(929548345)=(624284895811711862142)BA=(929548345)×(345548929)=(1186214210752129743892)
Given: A,BF3×4;CF4×5

2a

Can a change in A21 affect ((A+B)C)23 ?If so, give an exampleD=A+B((A+B)C)23=(DC)23=k=14D2kCk3==D21C13+D22C23+D21=A21+B21A21 can affect ((A+B)C)23Example:A=(000000000000),B=(000000000000),C=(00100000000000000000)(A+B)C=(000000000000000)A=(000010000000)(A+B)C=(000000010000000)

2b

Can a change in C21 affect ((A+B)C)23 ?If so, give an exampleD=A+B((A+B)C)23=(DC)23=k=14D2kCk3==D21C13+D22C23+D23C33+D24C43C21 cannot affect ((A+B)C)23
Given: AF2×3;BF3×4;CF4×5

3a

Can a change in B22 affect (ABC)13 ?If so, give an exampleABij=k=13AikBkjABC13=m=14AB1mCm3=m=14(k=13A1kBkm)Cm3==+A12B22C23+B22 can affect (ABC)13Example:A=(010000),B=(000000000000),C=(00000001000000000000)ABC=(0000000000)B=(000001000000),AB=(01000000)ABC=(0010000000)

3b

Can a change in B13 affect (ABC)22 ?If so, give an exampleABij=k=13AikBkjABC22=m=14AB2mCm2=m=14(k=13A2kBkm)Cm2==+A21B13C32+B13 can affect (ABC)22Example:A=(000100),B=(000000000000),C=(00000000000100000000)ABC=(0000000000)B=(001000000000),AB=(00000010)ABC=(0000001000)

4a

Given: A,BFn×nProve: tr(A+B)=tr(A)+tr(B)tr(A+B)=i=1n(A+B)ii=i=1n(Aii+Bii)==i=1nAii+i=1nBii=tr(A)+tr(B)tr(A+B)=tr(A)+tr(B)

4b

Given: AFm×n,BFn×mProve: tr(AB)=tr(BA)tr(AB)=i=1m(AB)ii=i=1m(k=1nAikBki)=k=1n(i=1mAikBki)==k=1n(i=1mBkiAik)=k=1nBAkk=tr(BA)tr(AB)=tr(BA)

5a

Given: αF;AFm×nProve: (αA)T=αAT{(αA)jiT=(αA)ij=αAijαAjiT=αAij(αA)jiT=αAjiT(αA)T=αAT

5b

Given: AFm×n;BFn×pProve: (AB)T=BTAT(AB)jiT=k=1nAikBkj=k=1nAkiTBjkT=k=1nBjkTAkiT=(BTAT)ji(AB)jiT=(BTAT)ji(AB)T=BTAT

5c

Given: ARn×nProve or disprove: AAT=ATAExample:A=(101101101),AT=(111000111)AAT=(222222222),ATA=(303000303)AATDisproved

6

Given: ARn×nProve: B,CRn×n,B=BT,C=CT:A=B+CThree criteria must be met: 1.Bij=Bji;B=f(A)2.Cij=Cji;C=g(A)3.A=B+CWhere f(x),g(x) are some functionsExample: B=A+AT2,C=AAT2Bij=(A+AT2)ij=Aij+Aji2=Aji+Aij2=(A+AT2)ji=BjiB=BTCij=(AAT2)ij=AijAji2=(AjiAij)2=((AAT)2)ji=CjiC=CTB+C=A+AT2+AAT2=2A2=AB=BT,C=CT,A=B+C
Matrices A,B are called "commuting" if AB=BAGiven: A,BRn×n

7a

Prove or disprove: (A=AT,B=BT)(A+B)=(A+B)TAij=AjiBij=Bji(A+B)ij=Aij+Bij=(Aji)+(Bji)=(Aji+Bji)=(A+B)ji(A+B)ij=(A+B)jiA+B=(A+B)T

7b

Prove or disprove: AB=(AB)TAB=BAExample:A=(001010100),B=(100000001)AB=(001000100),(AB)T=(001000100)=ABBA=(001000100)ABDisproved

7c

Given: A=AT,B=BTProve or disprove: AB=(AB)TAB=BA1.AB=(AB)TAB=BAAB=(AB)T(AB)ij=(AB)ijT=(AB)ji=k=1nAjkBki==k=1nBkiTAjkT=k=1nBikAkj=(BA)ijAB=(AB)T(AB)ij=(BA)ijAB=BAAB=(AB)TAB=BA2.AB=BAAB=(AB)TAB=BA(AB)ij=(BA)ij=k=1nBikAkj=k=1nBikTAkjT==k=1nAjkBki=(AB)jiAB=BA(AB)ij=(AB)jiAB=(AB)TAB=BAAB=(AB)T1. and 2.AB=(AB)TAB=BA