Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 3
1a
A
∈
Z
7
4
×
4
(
A
I
)
=
(
1
0
2
3
1
0
0
0
6
4
0
1
0
1
0
0
1
5
5
2
0
0
1
0
0
0
1
1
0
0
0
1
)
→
R
3
=
R
3
+
(
−
R
1
)
R
2
=
R
2
+
R
1
(
1
0
2
3
1
0
0
0
0
4
2
4
1
1
0
0
0
5
3
6
6
0
1
0
0
0
1
1
0
0
0
1
)
→
R
2
=
2
R
2
+
(
−
R
3
)
R
3
=
R
3
+
4
R
2
(
1
0
2
3
1
0
0
0
0
1
0
0
6
5
6
0
0
0
4
1
3
4
1
0
0
0
1
1
0
0
0
1
)
→
R
4
=
R
3
−
R
4
R
3
=
2
R
3
(
1
0
2
3
1
0
0
0
0
1
0
0
6
5
6
0
0
0
1
2
6
1
2
0
0
0
0
1
6
1
2
6
)
→
R
1
=
R
1
+
3
(
−
R
4
)
R
3
=
R
3
+
2
(
−
R
4
)
(
1
0
2
0
4
4
1
3
0
1
0
0
6
5
6
0
0
0
1
0
1
6
5
2
0
0
0
1
6
1
2
6
)
→
R
1
=
R
1
+
2
(
−
R
3
)
(
1
0
0
0
2
6
5
6
0
1
0
0
6
5
6
0
0
0
1
0
1
6
5
2
0
0
0
1
6
1
2
6
)
=
=
(
I
A
−
1
)
⟹
A
−
1
=
(
2
6
5
6
6
5
6
0
1
6
5
2
6
1
2
6
)
1b
A
∈
R
3
×
3
(
A
I
)
=
(
1
0
1
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
)
→
R
3
=
1
2
(
R
3
−
R
2
)
R
2
=
R
2
−
R
1
(
1
0
1
1
0
0
0
1
−
1
−
1
1
0
0
0
1
1
2
−
1
2
1
2
)
→
R
1
=
R
1
−
R
3
R
2
=
R
2
+
R
3
(
1
0
0
1
2
1
2
−
1
2
0
1
0
−
1
2
1
2
1
2
0
0
1
1
2
−
1
2
1
2
)
=
=
(
I
A
−
1
)
⟹
A
−
1
=
1
2
(
1
1
−
1
−
1
1
1
1
−
1
1
)
2
A
,
B
∈
F
n
×
n
A
i
j
=
{
1
i
≥
j
0
otherwise
B
i
j
=
{
1
i
=
j
−
1
i
=
j
+
1
0
otherwise
Prove that
A
and
B
are inverse matrices of each other
Proof:
(
A
B
)
i
j
=
∑
k
=
1
n
A
i
k
B
k
j
=
∑
k
=
1
i
A
i
k
⏟
k
≤
i
⟹
1
B
k
j
+
∑
k
=
i
+
1
n
A
i
k
⏟
k
>
i
⟹
0
B
k
j
=
∑
k
=
1
i
B
k
j
1.
i
=
j
⟹
(
A
B
)
i
j
=
∑
k
=
1
j
B
k
j
=
∑
k
=
1
j
−
1
B
k
j
⏟
k
<
j
⟹
0
+
B
j
j
=
0
+
1
=
1
2.
i
>
j
⟹
(
A
B
)
i
j
=
∑
k
=
1
j
B
k
j
⏟
1
+
∑
k
=
j
+
1
i
B
k
j
=
1
+
B
j
+
1
,
j
+
∑
k
=
j
+
2
i
B
k
j
⏟
k
>
j
+
1
⟹
0
=
=
1
+
−
1
+
0
=
0
3.
i
<
j
⟹
(
A
B
)
i
j
=
∑
k
=
1
i
B
k
j
⏟
k
<
j
⟹
0
=
0
⟹
(
A
B
)
i
j
=
{
1
i
=
j
0
otherwise
⟹
A
B
=
I
⟹
B
=
A
−
1
,
A
=
B
−
1
A
∈
F
n
×
n
3a
Prove or disprove: If
A
is an elementary matrix, then
A
2
=
I
Disproof:
Let
A
=
(
1
0
0
α
)
This matrix is an elementary row-multiplication matrix
A
2
=
A
A
=
(
1
0
0
α
)
×
(
1
0
0
α
)
=
(
1
0
0
α
2
)
⟹
A
2
≠
I
3b
Prove or disprove:
A
2
=
I
⟹
A
is an elementary matrix
Disproof:
A
=
(
0
1
0
0
1
0
0
0
0
0
0
1
0
0
1
0
)
A
is not an elementary matrix, as it swaps two pairs of rows,
but
A
2
=
I
⟹
Disproved
3c
Prove or disprove:
∄
A
−
1
⟹
∃
B
≠
0
:
A
B
=
0
Proof:
∄
A
−
1
⟹
System of equations
A
x
=
0
Has an all-zero row in the canonical form
⟹
∃
x
≠
0
:
A
x
=
0
⟹
Exists a non-zero matrix B comprised of columns equal to
x
⟹
∃
x
≠
0
:
∃
B
=
x
⋅
(
1
1
×
n
)
T
≠
0
:
A
x
=
0
⟹
A
B
=
0
3d
Prove or disprove:
B
≠
0
∧
A
B
=
0
⟹
∄
A
−
1
Proof:
Let
∃
A
−
1
Then
B
=
I
B
=
(
A
−
1
A
)
B
=
A
−
1
(
A
B
)
=
A
−
1
⋅
0
=
0
B
≠
0
∧
B
=
0
−
Contradiction!
⟹
∄
A
−
1
A
=
(
a
11
.
.
.
a
1
n
.
.
.
.
.
.
.
.
.
a
n
1
.
.
.
a
n
n
)
∈
F
n
×
n
B
=
(
a
11
.
.
.
a
1
n
0
.
.
.
.
.
.
.
.
.
.
.
.
a
n
1
.
.
.
a
n
n
0
b
1
.
.
.
b
n
b
n
+
1
)
∈
F
n
+
1
×
n
+
1
4a
Prove:
∄
A
−
1
⟹
∄
B
−
1
Proof:
Let
E
i
be an elementary matrix
∈
F
n
×
n
Let
E
=
(
∏
i
=
1
k
E
i
)
Let
A
1
=
E
A
∄
A
−
1
⟹
∃
E
:
∃
A
1
, that has at least one all-zero row
R
Let
E
i
′
=
(
E
i
0
n
×
1
0
1
×
n
1
)
∈
F
n
+
1
×
n
+
1
Note that
E
i
′
is an elementray matrix
Let
B
1
=
(
∏
i
=
1
k
E
i
′
)
⋅
B
=
(
A
1
0
n
×
1
{
b
1
,
…
,
b
n
}
b
n
+
1
)
B
1
is obtained by applying elementary transformations to
B
and has at least one all-zero row
(
R
0
)
⟹
∄
B
−
1
4b
Find sufficient and necessary conditions for
{
b
1
,
…
,
b
n
+
1
}
such that:
∃
A
−
1
⟺
∃
B
−
1
1.
∃
B
−
1
⟹
∃
A
−
1
Let
∃
B
−
1
(
∃
B
−
1
⟹
∃
A
−
1
)
≡
(
∄
B
−
1
∨
∃
A
−
1
)
≡
(
False
∨
∃
A
−
1
)
≡
∃
A
−
1
⟹
∃
B
−
1
⟹
∃
A
−
1
2.
∃
A
−
1
⟹
B
−
1
Let
∃
A
−
1
Let
E
i
be an elementary matrix
∈
F
n
×
n
Then
∃
E
=
(
∏
i
=
1
k
E
i
)
:
E
A
=
I
Let
E
i
′
=
(
E
i
0
n
×
1
0
1
×
n
1
)
∈
F
n
+
1
×
n
+
1
Note that
E
i
′
is an elementray matrix
Then
∃
E
′
=
(
∏
i
=
1
k
E
i
′
)
:
E
′
B
=
(
I
n
0
n
×
1
{
b
1
,
…
,
b
n
}
b
n
+
1
)
Let us apply some more elementary transformations:
∀
i
∈
[
1
,
n
]
:
R
n
+
1
=
R
n
+
1
−
b
i
⋅
R
i
After applying these elementary transformations the resulting matrix will look like this:
B
1
=
(
I
n
0
n
×
1
0
1
×
n
b
n
+
1
)
b
n
+
1
≠
0
⟺
∃
B
1
−
1
⟺
∃
B
−
1
⟹
b
n
+
1
≠
0
⟺
∃
B
−
1
1.
and
2.
⟹
b
n
+
1
≠
0
⟺
(
∃
A
−
1
⟺
∃
B
−
1
)
5a
Prove or disprove:
A
,
B
are elementary row-addition matrices
⟹
∃
A
,
B
∈
R
n
×
n
:
∄
(
A
+
B
)
−
1
Proof:
Let
A
=
(
[
1
0
2
1
]
0
2
×
(
n
−
2
)
0
(
n
−
2
)
×
2
I
n
−
2
)
,
B
=
(
[
1
2
0
1
]
0
2
×
(
n
−
2
)
0
2
×
(
n
−
2
)
I
n
−
2
)
A
:
R
2
=
R
2
+
2
R
1
,
B
:
R
1
=
R
1
+
2
R
2
A
+
B
=
(
[
2
2
2
2
]
0
2
×
(
n
−
2
)
0
2
×
(
n
−
2
)
2
I
n
−
2
)
(
A
+
B
)
1
=
(
A
+
B
)
2
⟹
∄
(
A
+
B
)
−
1
5b
Prove or disprove:
A
,
B
are elementary row-switching matrices
⟹
∃
A
,
B
∈
R
n
×
n
:
∄
(
A
+
B
)
−
1
Proof:
If
I
can be considered an elementary row-switching matrix,
then the statement is correct for all
n
≥
1
Otherwise it is only correct for
n
≥
4
Let
A
=
(
[
0
1
1
0
]
0
2
×
(
n
−
2
)
0
(
n
−
2
)
×
2
I
n
−
2
)
,
B
=
(
I
n
−
2
0
2
×
2
0
2
×
2
[
0
1
1
0
]
)
A
:
R
1
↔
R
2
,
B
:
R
n
−
1
↔
R
n
A
+
B
=
(
[
1
1
1
1
]
0
2
×
(
n
−
2
)
0
(
n
−
2
)
×
2
B
n
−
2
′
)
(
A
+
B
)
1
=
(
A
+
B
)
2
⟹
∄
(
A
+
B
)
−
1
5c
Prove or disprove:
A
B
=
B
A
,
A
3
+
3
A
2
B
+
3
A
B
2
+
B
3
=
I
⟹
∃
A
,
B
∈
R
n
×
n
:
∄
(
A
+
B
)
−
1
Disproof:
A
B
=
B
A
⟹
(
A
+
B
)
3
=
(
A
A
+
A
B
+
B
A
+
B
B
)
(
A
+
B
)
=
A
A
A
+
A
B
A
+
B
A
A
+
B
B
A
+
A
A
B
+
A
B
B
+
B
A
B
+
B
B
B
=
=
A
3
+
3
A
2
B
+
3
A
B
2
+
B
3
=
I
⟹
(
A
+
B
)
(
A
+
B
)
2
⏟
(
A
+
B
)
−
1
=
I
⟹
∃
(
A
+
B
)
−
1
6a
Given:
A
∈
R
4
×
5
(
∏
i
=
1
n
E
i
)
⋅
A
=
(
a
11
0
a
22
0
0
a
33
0
0
0
a
44
a
45
)
,
where
E
i
is an elementary matrix
Prove:
∀
b
∈
R
4
×
1
system of equations
A
x
=
b
has infinitely many solutions
Proof:
A
x
=
b
⟺
(
a
11
0
a
22
0
0
a
33
0
0
0
a
44
a
45
)
⋅
(
x
1
x
2
x
3
x
4
x
5
)
=
(
b
1
′
b
2
′
b
3
′
b
4
′
)
⟺
{
a
11
x
1
+
a
12
x
2
+
a
13
x
3
+
a
14
x
4
+
a
15
x
5
=
b
1
′
a
22
x
2
+
a
23
x
3
+
a
24
x
4
+
a
25
x
5
=
b
2
′
a
33
x
3
+
a
34
x
4
+
a
35
x
5
=
b
3
′
a
44
x
4
+
a
45
x
5
=
b
4
′
⟹
{
x
5
=
t
x
4
=
α
1
t
x
3
=
α
2
t
x
2
=
α
3
t
x
1
=
α
4
t
⟹
System of equations has infinitely many solutions
6b
In addition to what is given in 6a,
A
⋅
(
1
2
0
0
−
3
−
4
−
2
1
4
−
1
0
2
1
0
1
)
=
(
0
−
4
−
9
0
4
21
0
−
7
−
13
0
6
−
6
)
Find a set of solutions for the system of equations
A
x
=
(
−
4
4
−
7
6
)
Solution:
A
⋅
(
1
2
0
0
−
3
−
4
−
2
1
4
−
1
0
2
1
0
1
)
=
(
0
−
4
−
9
0
4
21
0
−
7
−
13
0
6
−
6
)
|
⋅
(
0
1
0
)
,
(
1
0
0
)
A
⋅
(
2
−
3
1
0
0
)
=
(
−
4
4
−
7
6
)
,
A
⋅
(
1
0
2
−
1
1
)
=
Homogeneous!
0
⟹
A
x
=
(
−
4
4
−
7
6
)
⟹
x
=
{
(
2
−
3
1
0
0
)
+
α
(
1
0
2
−
1
1
)
|
∀
α
∈
R
}