Linear-1 3

1a

AZ74×4(AI)=(10231000640101001552001000110001)R3=R3+(R1)R2=R2+R1(10231000042411000536601000110001)R2=2R2+(R3)R3=R3+4R2(10231000010065600041341000110001)R4=R3R4R3=2R3(10231000010065600012612000016126)R1=R1+3(R4)R3=R3+2(R4)(10204413010065600010165200016126)R1=R1+2(R3)(10002656010065600010165200016126)==(IA1)A1=(2656656016526126)

1b

AR3×3(AI)=(101100110010011001)R3=12(R3R2)R2=R2R1(101100011110001121212)R1=R1R3R2=R2+R3(100121212010121212001121212)==(IA1)A1=12(111111111)

2

A,BFn×nAij={1ij0otherwiseBij={1i=j1i=j+10otherwiseProve that A and B are inverse matrices of each otherProof:(AB)ij=k=1nAikBkj=k=1iAikki1Bkj+k=i+1nAikk>i0Bkj=k=1iBkj1.i=j(AB)ij=k=1jBkj=k=1j1Bkjk<j0+Bjj=0+1=12.i>j(AB)ij=k=1jBkj1+k=j+1iBkj=1+Bj+1,j+k=j+2iBkjk>j+10==1+1+0=03.i<j(AB)ij=k=1iBkjk<j0=0(AB)ij={1i=j0otherwiseAB=IB=A1,A=B1
AFn×n

3a

Prove or disprove: If A is an elementary matrix, then A2=IDisproof:Let A=(100α)This matrix is an elementary row-multiplication matrixA2=AA=(100α)×(100α)=(100α2)A2I

3b

Prove or disprove: A2=IA is an elementary matrixDisproof:A=(0100100000010010)A is not an elementary matrix, as it swaps two pairs of rows,but A2=IDisproved

3c

Prove or disprove: A1B0:AB=0Proof:A1System of equations Ax=0Has an all-zero row in the canonical formx0:Ax=0Exists a non-zero matrix B comprised of columns equal to xx0:B=x(11×n)T0:Ax=0AB=0

3d

Prove or disprove: B0AB=0A1Proof: Let A1Then B=IB=(A1A)B=A1(AB)=A10=0B0B=0Contradiction!A1
A=(a11...a1n.........an1...ann)Fn×nB=(a11...a1n0............an1...ann0b1...bnbn+1)Fn+1×n+1

4a

Prove: A1B1Proof:Let Ei be an elementary matrixFn×nLet E=(i=1kEi)Let A1=EAA1E:A1, that has at least one all-zero row RLet Ei=(Ei0n×101×n1)Fn+1×n+1Note that Ei is an elementray matrixLet B1=(i=1kEi)B=(A10n×1{b1,,bn}bn+1)B1 is obtained by applying elementary transformations to Band has at least one all-zero row (R0)B1

4b

Find sufficient and necessary conditions for {b1,,bn+1} such that:A1B11.B1A1Let B1(B1A1)(B1A1)(FalseA1)A1B1A12.A1B1Let A1Let Ei be an elementary matrixFn×nThen E=(i=1kEi):EA=ILet Ei=(Ei0n×101×n1)Fn+1×n+1Note that Ei is an elementray matrixThen E=(i=1kEi):EB=(In0n×1{b1,,bn}bn+1)Let us apply some more elementary transformations: i[1,n]:Rn+1=Rn+1biRiAfter applying these elementary transformations the resulting matrix will look like this:B1=(In0n×101×nbn+1)bn+10B11B1bn+10B11. and 2.bn+10(A1B1)

5a

Prove or disprove: A,B are elementary row-addition matricesA,BRn×n:(A+B)1Proof:Let A=([1021]02×(n2)0(n2)×2In2),B=([1201]02×(n2)02×(n2)In2)A:R2=R2+2R1,B:R1=R1+2R2A+B=([2222]02×(n2)02×(n2)2In2)(A+B)1=(A+B)2(A+B)1

5b

Prove or disprove: A,B are elementary row-switching matricesA,BRn×n:(A+B)1Proof: If I can be considered an elementary row-switching matrix,then the statement is correct for all n1Otherwise it is only correct for n4Let A=([0110]02×(n2)0(n2)×2In2),B=(In202×202×2[0110])A:R1R2,B:Rn1RnA+B=([1111]02×(n2)0(n2)×2Bn2)(A+B)1=(A+B)2(A+B)1

5c

Prove or disprove: AB=BA,A3+3A2B+3AB2+B3=IA,BRn×n:(A+B)1Disproof:AB=BA(A+B)3=(AA+AB+BA+BB)(A+B)=AAA+ABA+BAA+BBA+AAB+ABB+BAB+BBB==A3+3A2B+3AB2+B3=I(A+B)(A+B)2(A+B)1=I(A+B)1

6a

Given: AR4×5(i=1nEi)A=(a110a2200a33000a44a45), where Ei is an elementary matrixProve: bR4×1 system of equations Ax=b has infinitely many solutionsProof:Ax=b(a110a2200a33000a44a45)(x1x2x3x4x5)=(b1b2b3b4){a11x1+a12x2+a13x3+a14x4+a15x5=b1a22x2+a23x3+a24x4+a25x5=b2a33x3+a34x4+a35x5=b3a44x4+a45x5=b4{x5=tx4=α1tx3=α2tx2=α3tx1=α4tSystem of equations has infinitely many solutions

6b

In addition to what is given in 6a,A(120034214102101)=(04904210713066)Find a set of solutions for the system of equations Ax=(4476)Solution:A(120034214102101)=(04904210713066)|(010),(100)A(23100)=(4476),A(10211)=Homogeneous!0Ax=(4476)x={(23100)+α(10211)|αR}