Linear-1 4

1

A=(424532341)Find PLU decomposition of ASolution:(AII)=(424100100532010010341001001)R3R1(341100001532010010424001100)R3+43R1R2+53R1(341100001011311353100100103834301100)R31011R2(341100001011311353100100064310111100)P=(001010100),L=(10053104310111),U=(3410113113006)

2

P=(001100010),L=(100210411),U=(432041008)Solve Ax=(123)Solution:Ax=(123)PAx=P(123)=(312)LUx=(312),Ux=x~Lx~=(312)x~=(3515)Ux=(3515)x=(1411282532158)
Matrix is called nilpotent, if A,A2,A3,,Ak10,Ak=0

3a

Prove: For all nilpotent matrices A:B0:AB=0Proof:Ak=0AAk1=0,Ak10B=Ak10:AB=0

3b

Prove: For all nilpotent matrices A:A1Proof:Let A1Then AkA1=Ak1AA1=Ak1I=Ak1AkA1=0,Ak10Contradiction!A1

4a

W={ARn×n|k{0}N:Ak=0}Prove or disprove: W is a vector subspace of vector space V=Rn×nDisproof:Let n=2Let A=(0100),B=(0010)A2=B2=0A,BWA+B=(0110) which is an invertible matrixA+BWW is not a vector subspace of V

4b

W={ARn×n|PRn×n:P1AP=0}Prove or disprove: W is a vector subspace of vector space V=Rn×nProof:P1AP=0PP1APP1=P0n×nP1IAI=0A=0W={0}W is a vector subspace of V

4c

W={ARn×n|AAT=I}Prove or disprove: W is a vector subspace of vector space V=Rn×nDisproof:0T=000T=00=0I0WW is not a vector subspace of V

4d

V={f:RR|f is a function}W={fV:f(1)=f(2)}Prove or disprove: W is a vector subspace of vector space VProof:1.0V:f(x)=0f(1)=0,f(2)=0f(1)=f(2)0VW2.Letf(x)=(f1+αf2)(x)=f1(x)+αf2(x)f(1)=f1(1)+αf2(1)=f1(2)+αf2(2)f(2)=f1(2)+αf2(2)=f(1)(f1+αf2)(x)WW is a vector subspace of V

4e

W={(xyz)R3|{x+y+z=02x+y+z=0}Prove or disprove: W is a vector subspace of V=R3Proof: 1.(000):{0+0+0=020+0+0=00W2.w1+αw2=(x1+αx2y1+αy2z1+αz2){x1+y1+z1=0+αx2+αy2+αz2=α0=0=02x1+y1+z1=0+2αx2+αy2+αz2=α0=0=0w1+αw2WW is a vector subspace of V

4f

W={ARn×n|αR:AT=αA}Prove or disprove: W is a vector subspace of V=Rn×nDisproof:1.0T=0αR:0T=α00W2.X=(W1+αW2)XT=W1T+α(W2T)=α1W1+αα2W2Let W1=(0110),W2=(0110)W1T=W1W1WW2T=W2W2WW1+2W2=(0310)(W1+2W2)T(W1+2W2)WW is not a vector subspace of V

4g

αR,Wα={ARn×n|AT=αA}Prove or disprove: Wα is a vector subspace of V=Rn×nProof:1.0T=0αR:0T=α00W2.X=W1+αW2XT=W1T+β(W2T)=αW1+βαW2=αX(W1+αW2)WW is a vector subspace of V

4h

αR,Wα={p(x)Rn[x]|p(x)=αp(x+α2)}Prove or disprove: Wα is a vector subspace of V=Rn[x]Proof:1.p0=0=αp0(x+α2)=00W2.p(x)=p1(x)+βp2(x)p(x)=(p1(x)+βp2(x))=p1(x)+βp2(x)=αp1(x+α2)+αβp2(x+α2)==α(p(x+α2))(p1(x)+βp2x)WW is a vector subspace of V

4i

W={ACn×n|A=A}Prove or disprove: W is a vector subspace of V=Cn×nDisproof:Let n=2Let A=(1001),B=(0ii0)A=A,B=(0i(i)0)=(0ii0)=BA,BWA+iB=(1111)(A+iB)=(1111)A+iBA+iBWW is not a vector subspace of V