Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 4
1
A
=
(
−
4
−
2
−
4
−
5
−
3
2
3
4
1
)
Find
P
L
U
decomposition of
A
Solution:
(
A
I
I
)
=
(
−
4
−
2
−
4
1
0
0
1
0
0
−
5
−
3
2
0
1
0
0
1
0
3
4
1
0
0
1
0
0
1
)
→
R
3
↔
R
1
(
3
4
1
1
0
0
0
0
1
−
5
−
3
2
0
1
0
0
1
0
−
4
−
2
−
4
0
0
1
1
0
0
)
→
R
3
+
4
3
R
1
R
2
+
5
3
R
1
(
3
4
1
1
0
0
0
0
1
0
11
3
11
3
−
5
3
1
0
0
1
0
0
10
3
−
8
3
−
4
3
0
1
1
0
0
)
→
R
3
−
10
11
R
2
(
3
4
1
1
0
0
0
0
1
0
11
3
11
3
−
5
3
1
0
0
1
0
0
0
−
6
−
4
3
10
11
1
1
0
0
)
P
=
(
0
0
1
0
1
0
1
0
0
)
,
L
=
(
1
0
0
−
5
3
1
0
−
4
3
10
11
1
)
,
U
=
(
3
4
1
0
11
3
11
3
0
0
−
6
)
2
P
=
(
0
0
1
1
0
0
0
1
0
)
,
L
=
(
1
0
0
2
1
0
4
−
1
1
)
,
U
=
(
4
−
3
2
0
4
1
0
0
8
)
Solve
A
x
=
(
1
2
3
)
Solution:
A
x
=
(
1
2
3
)
⟹
P
A
x
=
P
(
1
2
3
)
=
(
3
1
2
)
⟹
L
U
x
=
(
3
1
2
)
,
U
x
=
x
~
⟹
L
x
~
=
(
3
1
2
)
⟹
x
~
=
(
3
−
5
−
15
)
⟹
U
x
=
(
3
−
5
−
15
)
⟹
x
=
(
141
128
−
25
32
−
15
8
)
Matrix is called nilpotent, if
A
,
A
2
,
A
3
,
…
,
A
k
−
1
≠
0
,
A
k
=
0
3a
Prove: For all nilpotent matrices
A
:
∃
B
≠
0
:
A
B
=
0
Proof:
A
k
=
0
⟹
A
⋅
A
k
−
1
=
0
,
A
k
−
1
≠
0
⟹
∃
B
=
A
k
−
1
≠
0
:
A
B
=
0
3b
Prove: For all nilpotent matrices
A
:
∄
A
−
1
Proof:
Let
∃
A
−
1
Then
A
k
⋅
A
−
1
=
A
k
−
1
⋅
A
A
−
1
=
A
k
−
1
I
=
A
k
−
1
A
k
⋅
A
−
1
=
0
,
A
k
−
1
≠
0
−
Contradiction!
⟹
∄
A
−
1
4a
W
=
{
A
∈
R
n
×
n
|
∃
k
∈
{
0
}
∪
N
:
A
k
=
0
}
Prove or disprove:
W
is a vector subspace of vector space
V
=
R
n
×
n
Disproof:
Let
n
=
2
Let
A
=
(
0
1
0
0
)
,
B
=
(
0
0
1
0
)
A
2
=
B
2
=
0
⟹
A
,
B
∈
W
A
+
B
=
(
0
1
1
0
)
which is an invertible matrix
⟹
A
+
B
∉
W
⟹
W
is not a vector subspace of
V
4b
W
=
{
A
∈
R
n
×
n
|
∃
P
∈
R
n
×
n
:
P
−
1
A
P
=
0
}
Prove or disprove:
W
is a vector subspace of vector space
V
=
R
n
×
n
Proof:
P
−
1
A
P
=
0
⟺
P
P
−
1
A
P
P
−
1
=
P
⋅
0
n
×
n
⋅
P
−
1
⟺
I
A
I
=
0
⟺
A
=
0
⟹
W
=
{
0
}
⟹
W
is a vector subspace of
V
4c
W
=
{
A
∈
R
n
×
n
|
A
A
T
=
I
}
Prove or disprove:
W
is a vector subspace of vector space
V
=
R
n
×
n
Disproof:
0
T
=
0
⟹
0
⋅
0
T
=
0
⋅
0
=
0
≠
I
⟹
0
∉
W
⟹
W
is not a vector subspace of
V
4d
V
=
{
f
:
R
→
R
|
f
is a function
}
W
=
{
f
∈
V
:
f
(
1
)
=
f
(
2
)
}
Prove or disprove:
W
is a vector subspace of vector space
V
Proof:
1.
0
V
:
f
(
x
)
=
0
⟹
f
(
1
)
=
0
,
f
(
2
)
=
0
⟹
f
(
1
)
=
f
(
2
)
⟹
0
V
∈
W
2.
Let
f
(
x
)
=
(
f
1
+
α
f
2
)
(
x
)
=
f
1
(
x
)
+
α
f
2
(
x
)
f
(
1
)
=
f
1
(
1
)
+
α
f
2
(
1
)
=
f
1
(
2
)
+
α
f
2
(
2
)
f
(
2
)
=
f
1
(
2
)
+
α
f
2
(
2
)
=
f
(
1
)
⟹
(
f
1
+
α
f
2
)
(
x
)
∈
W
⟹
W
is a vector subspace of
V
4e
W
=
{
(
x
y
z
)
∈
R
3
|
{
x
+
y
+
z
=
0
2
x
+
y
+
z
=
0
}
Prove or disprove:
W
is a vector subspace of
V
=
R
3
Proof:
1.
(
0
0
0
)
:
{
0
+
0
+
0
=
0
2
⋅
0
+
0
+
0
=
0
⟹
0
∈
W
2.
w
1
+
α
w
2
=
(
x
1
+
α
x
2
y
1
+
α
y
2
z
1
+
α
z
2
)
{
x
1
+
y
1
+
z
1
⏟
=
0
+
α
x
2
+
α
y
2
+
α
z
2
⏟
=
α
⋅
0
=
0
=
0
2
x
1
+
y
1
+
z
1
⏟
=
0
+
2
α
x
2
+
α
y
2
+
α
z
2
⏟
=
α
⋅
0
=
0
=
0
⟹
w
1
+
α
w
2
∈
W
⟹
W
is a vector subspace of
V
4f
W
=
{
A
∈
R
n
×
n
|
∃
α
∈
R
:
A
T
=
α
A
}
Prove or disprove:
W
is a vector subspace of
V
=
R
n
×
n
Disproof:
1.
0
T
=
0
⟹
∀
α
∈
R
:
0
T
=
α
⋅
0
⟹
0
∈
W
2.
X
=
(
W
1
+
α
W
2
)
X
T
=
W
1
T
+
α
(
W
2
T
)
=
α
1
W
1
+
α
⋅
α
2
W
2
Let
W
1
=
(
0
1
−
1
0
)
,
W
2
=
(
0
1
1
0
)
W
1
T
=
−
W
1
⟹
W
1
∈
W
W
2
T
=
W
2
⟹
W
2
∈
W
W
1
+
2
W
2
=
(
0
3
1
0
)
≠
(
W
1
+
2
W
2
)
T
⟹
(
W
1
+
2
W
2
)
∉
W
⟹
W
is not a vector subspace of
V
4g
α
∈
R
,
W
α
=
{
A
∈
R
n
×
n
|
A
T
=
α
A
}
Prove or disprove:
W
α
is a vector subspace of
V
=
R
n
×
n
Proof:
1.
0
T
=
0
⟹
∀
α
∈
R
:
0
T
=
α
⋅
0
⟹
0
∈
W
2.
X
=
W
1
+
α
W
2
X
T
=
W
1
T
+
β
(
W
2
T
)
=
α
W
1
+
β
⋅
α
W
2
=
α
X
⟹
(
W
1
+
α
W
2
)
∈
W
⟹
W
is a vector subspace of
V
4h
α
∈
R
,
W
α
=
{
p
(
x
)
∈
R
n
[
x
]
|
p
′
(
x
)
=
α
p
(
x
+
α
2
)
}
Prove or disprove:
W
α
is a vector subspace of
V
=
R
n
[
x
]
Proof:
1.
p
0
′
=
0
=
α
⋅
p
0
(
x
+
α
2
)
⏟
=
0
⟹
0
∈
W
2.
p
(
x
)
=
p
1
(
x
)
+
β
p
2
(
x
)
p
′
(
x
)
=
(
p
1
(
x
)
+
β
p
2
(
x
)
)
′
=
p
1
′
(
x
)
+
β
p
2
′
(
x
)
=
α
p
1
(
x
+
α
2
)
+
α
⋅
β
p
2
(
x
+
α
2
)
=
=
α
(
p
(
x
+
α
2
)
)
⟹
(
p
1
(
x
)
+
β
p
2
x
)
∈
W
⟹
W
is a vector subspace of
V
4i
W
=
{
A
∈
C
n
×
n
|
A
=
A
∗
}
Prove or disprove:
W
is a vector subspace of
V
=
C
n
×
n
Disproof:
Let
n
=
2
Let
A
=
(
1
0
0
1
)
,
B
=
(
0
−
i
i
0
)
A
∗
=
A
,
B
∗
=
(
0
i
∗
(
−
i
)
∗
0
)
=
(
0
−
i
i
0
)
=
B
⟹
A
,
B
∈
W
A
+
i
B
=
(
1
1
−
1
1
)
(
A
+
i
B
)
∗
=
(
1
−
1
1
1
)
≠
A
+
i
B
⟹
A
+
i
B
∉
W
⟹
W
is not a vector subspace of
V