Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 5
1
U
=
{
(
b
−
c
c
)
|
b
,
c
∈
R
}
,
W
=
{
(
a
2
a
0
)
|
a
∈
R
}
1a
Prove:
U
,
W
are vector spaces over
R
Proof:
1.
Let
b
=
0
,
c
=
0
⟹
(
b
−
c
c
)
=
(
0
0
0
)
⟹
0
∈
U
Let
a
=
0
⟹
(
a
2
a
0
)
=
(
0
0
0
)
⟹
0
∈
W
2.
Let
u
1
,
u
2
∈
U
,
w
1
,
w
2
∈
W
,
α
,
β
∈
R
u
1
+
α
u
2
=
(
b
1
+
α
b
2
−
c
1
−
α
c
2
c
1
+
α
c
2
)
⟹
−
c
1
−
α
c
2
=
−
(
c
1
+
α
c
2
)
u
1
+
α
u
2
∈
U
⟹
U
is a vector space
w
1
+
β
w
2
=
(
a
1
+
β
a
2
2
a
1
+
β
2
a
2
0
+
β
⋅
0
)
⟹
2
a
1
+
β
2
a
2
=
2
(
a
1
+
β
a
2
)
w
1
+
β
w
2
∈
W
⟹
W
is a vector space
1b
Prove:
U
⊕
W
=
R
3
Proof:
U
+
W
=
{
(
b
−
c
c
)
+
(
a
2
a
0
)
|
a
,
b
,
c
∈
R
}
=
{
(
b
+
a
−
c
+
2
a
c
)
|
a
,
b
,
c
∈
R
}
Let
a
,
b
,
c
∈
R
,
x
,
y
,
z
∈
R
(
b
+
a
−
c
+
2
a
c
)
=
(
x
y
z
)
⟺
{
a
+
b
+
0
c
=
x
2
a
+
0
b
−
c
=
y
0
a
+
0
b
+
c
=
z
(
1
1
0
x
2
0
−
1
y
0
0
1
z
)
→
(
1
1
0
x
0
−
2
−
1
y
−
2
x
0
0
1
z
)
→
(
1
1
0
x
0
−
2
0
y
−
2
x
+
z
0
0
1
z
)
→
(
1
0
0
y
+
z
2
0
1
0
2
x
−
y
−
z
2
0
0
1
z
)
⟹
{
a
=
y
+
z
2
b
=
2
x
−
y
−
z
2
c
=
z
⟹
∀
v
∈
R
3
:
∃
u
∈
U
,
w
∈
W
:
u
+
w
=
v
⟹
U
+
W
=
R
3
(
1
)
(
b
−
c
c
)
=
(
a
2
a
0
)
⟺
{
c
=
0
−
c
=
2
a
b
=
a
⟺
{
a
=
0
b
=
0
c
=
0
⟺
U
∩
W
=
{
0
}
(
2
)
(
1
)
and
(
2
)
⟹
U
⊕
W
=
R
3
2
V
is a vector space over
F
U
,
W
−
vector subspaces of
V
U
⊕
W
=
V
Prove or disprove:
U
∪
W
=
V
Disproof:
Let
V
=
R
2
U
=
{
(
a
0
)
|
a
∈
R
}
,
W
=
{
(
0
b
)
|
b
∈
R
}
U
⊕
W
=
V
U
∪
W
=
{
(
a
0
)
,
(
0
b
)
|
a
,
b
∈
R
}
(
1
1
)
∉
U
∪
W
⟹
U
∪
W
≠
V
3
V
is a vector space over
F
U
,
W
−
vector subspaces of
V
Prove or disprove:
∀
V
:
∃
U
,
W
:
U
⊕
W
=
V
Proof:
Let
V
be a vector space over
F
V
is also a vector subspace of
V
{
0
}
is also a vector subspace of
V
Then
∀
V
:
∃
U
=
V
,
W
=
{
0
}
:
U
⊕
W
=
V
4a
B
1
=
{
x
2
+
x
+
1
,
x
2
−
2
x
+
1
}
x
∈
?
s
p
(
B
1
)
1
⋅
(
x
2
+
x
+
1
)
+
(
−
1
)
⋅
(
x
2
−
2
x
+
1
)
=
3
x
α
(
x
2
+
x
+
1
)
+
β
(
x
2
−
2
x
+
1
)
=
x
⟹
{
α
=
1
3
β
=
−
1
3
⟹
x
∈
s
p
(
B
1
)
4b
B
2
=
{
(
1
1
1
)
,
(
1
2
1
)
}
(
0
1
2
)
∈
?
s
p
(
B
2
)
α
(
1
1
1
)
+
β
(
1
2
1
)
=
(
0
1
2
)
⟺
{
α
+
β
=
0
α
+
2
β
=
1
α
+
β
=
2
⟺
∅
⟹
(
0
1
2
)
∉
s
p
(
B
2
)
4c
B
3
=
{
(
1
0
1
)
,
(
1
2
1
)
}
(
−
1
1
−
1
)
∈
?
s
p
(
B
3
)
α
(
1
0
1
)
+
β
(
1
2
1
)
=
(
−
1
1
−
1
)
⟺
{
α
+
β
=
−
1
2
β
=
1
α
+
β
=
−
1
⟹
{
α
=
−
3
2
β
=
1
2
⟹
(
−
1
1
−
1
)
∈
s
p
(
B
3
)
4d
B
4
=
{
(
1
2
3
4
)
,
(
2
3
4
1
)
,
(
3
4
1
2
)
,
(
4
1
2
3
)
}
(
30
24
22
24
)
∈
?
s
p
(
B
4
)
α
(
1
2
3
4
)
+
β
(
2
3
4
1
)
+
γ
(
3
4
1
2
)
+
δ
(
4
1
2
3
)
=
(
30
24
22
24
)
⟺
{
α
+
2
β
+
3
γ
+
4
δ
=
30
2
α
+
3
β
+
4
γ
+
δ
=
24
3
α
+
4
β
+
γ
+
2
δ
=
22
4
α
+
β
+
2
γ
+
3
δ
=
24
(
1
2
3
4
30
2
3
4
1
24
3
4
1
2
22
4
1
2
3
24
)
→
(
1
2
3
4
30
0
1
2
7
36
0
2
8
10
68
0
7
10
13
96
)
→
(
1
2
3
4
30
0
1
2
7
36
0
0
4
−
4
−
4
0
0
4
36
156
)
→
(
1
2
3
4
30
0
1
2
7
36
0
0
1
−
1
−
1
0
0
0
40
160
)
→
(
1
2
3
4
30
0
1
2
7
36
0
0
1
−
1
−
1
0
0
0
1
4
)
→
(
1
2
3
0
14
0
1
2
0
8
0
0
1
0
3
0
0
0
1
4
)
→
(
1
2
0
0
5
0
1
0
0
2
0
0
1
0
3
0
0
0
1
4
)
→
(
1
0
0
0
1
0
1
0
0
2
0
0
1
0
3
0
0
0
1
4
)
⟹
{
α
=
1
β
=
2
γ
=
3
δ
=
4
⟹
(
30
24
22
24
)
∈
s
p
(
B
4
)
5a
B
2
=
{
(
1
1
2
)
,
(
1
2
1
)
,
(
2
1
1
)
}
(
1
1
1
)
∈
?
s
p
(
B
2
)
α
(
1
1
2
)
+
β
(
1
2
1
)
+
γ
(
2
1
1
)
=
(
1
1
1
)
(
1
1
2
1
1
2
1
1
2
1
1
1
)
→
(
1
1
2
1
0
1
−
1
0
0
1
3
1
)
→
(
1
1
2
1
0
1
−
1
0
0
0
4
1
)
⟹
System has exactly one solution
(
1
1
2
)
+
(
1
2
1
)
+
(
2
1
1
)
=
(
4
4
4
)
⟹
1
4
⋅
(
(
1
1
2
)
+
(
1
2
1
)
+
(
2
1
1
)
)
=
(
1
1
1
)
⟹
{
α
=
1
4
β
=
1
4
γ
=
1
4
⟹
(
1
1
1
)
∈
s
p
(
B
2
)
5b
{
x
+
y
+
2
z
=
1
x
+
2
y
+
z
=
1
2
x
+
y
+
z
=
1
⟺
x
(
1
1
2
)
+
y
(
1
2
1
)
+
z
(
2
1
1
)
=
(
1
1
1
)
⟹
{
x
=
1
4
y
=
1
4
z
=
1
4
6
V
is a vector space over
F
Let
u
,
v
,
w
∈
V
,
u
≠
0
s
p
(
{
u
}
)
=
?
s
p
(
{
u
,
v
}
)
∩
s
p
(
{
u
,
w
}
)
s
p
(
{
u
,
v
}
)
=
{
α
u
+
β
v
|
α
,
β
∈
F
}
=
{
α
u
+
β
v
+
0
w
|
α
,
β
∈
F
}
s
p
(
{
u
,
w
}
)
=
{
γ
u
+
δ
w
|
γ
,
δ
∈
F
}
=
{
γ
u
+
δ
w
+
0
v
|
α
,
β
∈
F
}
Let
v
≠
w
⟹
s
p
(
{
u
,
v
}
)
∩
s
p
(
{
u
,
w
}
)
=
{
α
1
u
+
α
2
v
+
α
3
w
|
α
1
,
α
2
,
α
3
∈
F
{
α
1
=
α
=
γ
α
2
=
β
=
0
α
3
=
δ
=
0
}
=
=
{
α
1
u
|
α
1
∈
F
}
=
s
p
(
{
u
}
)
Let
v
=
w
s
p
(
{
u
,
v
}
)
∩
s
p
(
{
u
,
w
}
)
=
s
p
(
{
u
,
v
}
)
∩
s
p
(
{
u
,
v
}
)
=
s
p
(
{
u
,
v
}
)
⟹
{
s
p
(
{
u
}
)
=
s
p
(
{
u
,
v
}
)
∩
s
p
(
{
u
,
w
}
)
v
≠
w
∨
u
=
v
=
w
s
p
(
{
u
}
)
≠
s
p
(
{
u
,
v
}
)
∩
s
p
(
{
u
,
w
}
)
u
≠
v
=
w
7
V
is a vector space over
F
S
1
,
S
2
⊆
V
Prove:
S
1
⊆
S
2
⟹
s
p
(
S
1
)
⊆
s
p
(
S
2
)
Proof:
Let
v
1
∈
s
p
(
S
1
)
⟹
∃
{
α
1
,
…
,
α
n
}
⊆
F
,
{
s
1
,
…
,
s
n
}
⊆
S
1
:
v
1
=
∑
i
=
1
n
α
i
s
i
{
s
1
,
…
,
s
n
}
⊆
S
1
⊆
S
2
⟹
{
s
1
,
…
,
s
n
}
⊆
S
2
⟹
∃
{
α
1
,
…
,
α
n
}
⊆
F
,
{
s
1
,
…
,
s
n
}
⊆
S
2
:
v
1
=
∑
i
=
1
n
α
i
s
i
⟺
v
1
∈
s
p
(
S
2
)
⟹
s
p
(
S
1
)
⊆
s
p
(
S
2
)
8
V
is a vector space over
F
A
,
B
⊆
V
W
⊆
V
−
vector subspace of
V
8a
Prove or disprove:
s
p
(
A
∪
W
∪
B
)
=
s
p
(
A
)
∪
s
p
(
W
)
∪
s
p
(
B
)
Disproof:
V
=
R
2
A
=
{
(
1
0
)
}
,
B
=
{
(
0
1
)
}
.
W
=
{
(
0
0
)
}
A
∪
B
∪
W
=
{
(
0
0
)
,
(
1
0
)
,
(
0
1
)
}
⟹
s
p
(
A
∪
W
∪
B
)
=
R
2
s
p
(
A
)
=
{
(
a
0
)
|
a
∈
R
}
,
s
p
(
B
)
=
{
(
0
b
)
|
b
i
n
R
}
,
s
p
(
W
)
=
{
(
0
0
)
}
⟹
s
p
(
A
)
∪
s
p
(
W
)
∪
s
p
(
B
)
=
{
(
a
0
)
,
(
0
b
)
,
(
0
0
)
|
a
,
b
∈
R
}
(
1
1
)
∉
s
p
(
A
)
∪
s
p
(
W
)
∪
s
p
(
B
)
⟹
s
p
(
A
)
∪
s
p
(
W
)
∪
s
p
(
B
)
≠
R
2
=
s
p
(
A
∪
W
∪
B
)
⟹
s
p
(
A
∪
W
∪
B
)
≠
s
p
(
A
)
∪
s
p
(
W
)
∪
s
p
(
B
)
8b
Prove or disprove:
s
p
(
A
∪
W
∪
B
)
=
(
s
p
(
A
)
+
s
p
(
B
)
)
∪
s
p
(
W
)
Disproof:
V
=
R
3
A
=
{
(
1
0
0
)
}
,
B
=
{
(
0
1
0
)
}
,
W
=
{
(
0
0
0
)
,
(
0
0
x
)
|
x
∈
R
}
A
∪
W
∪
B
=
{
(
1
0
0
)
,
(
0
1
0
)
,
(
0
0
0
)
,
(
0
0
x
)
|
x
∈
R
}
⟹
s
p
(
A
∪
W
∪
B
)
=
R
3
s
p
(
A
)
=
{
(
a
0
0
)
}
,
s
p
(
B
)
=
{
(
0
b
0
)
|
b
∈
R
}
⟹
s
p
(
A
)
+
s
p
(
B
)
=
{
(
a
b
0
)
|
a
,
b
∈
R
}
s
p
(
W
)
=
{
(
0
0
x
)
|
x
∈
R
}
⟹
(
s
p
(
A
)
+
s
p
(
B
)
)
∪
s
p
(
W
)
=
{
(
a
b
0
)
,
(
0
0
x
)
|
a
,
b
,
x
∈
R
}
(
1
1
1
)
∉
(
s
p
(
A
)
+
s
p
(
B
)
)
∪
s
p
(
W
)
⟹
(
s
p
(
A
)
+
s
p
(
B
)
)
∪
s
p
(
W
)
≠
R
3
=
s
p
(
A
∪
W
∪
B
)
⟹
s
p
(
A
∪
W
∪
B
)
≠
(
s
p
(
A
)
+
s
p
(
B
)
)
∪
s
p
(
W
)