Linear-1 5

1

U={(bcc)|b,cR},W={(a2a0)|aR}

1a

Prove: U,W are vector spaces over RProof:1.Let b=0,c=0(bcc)=(000)0ULet a=0(a2a0)=(000)0W2.Let u1,u2U,w1,w2W,α,βRu1+αu2=(b1+αb2c1αc2c1+αc2)c1αc2=(c1+αc2)u1+αu2UU is a vector spacew1+βw2=(a1+βa22a1+β2a20+β0)2a1+β2a2=2(a1+βa2)w1+βw2WW is a vector space

1b

Prove: UW=R3Proof: U+W={(bcc)+(a2a0)|a,b,cR}={(b+ac+2ac)|a,b,cR}Let a,b,cR,x,y,zR(b+ac+2ac)=(xyz){a+b+0c=x2a+0bc=y0a+0b+c=z(110x201y001z)(110x021y2x001z)(110x020y2x+z001z)(100y+z20102xyz2001z){a=y+z2b=2xyz2c=zvR3:uU,wW:u+w=vU+W=R3(1)(bcc)=(a2a0){c=0c=2ab=a{a=0b=0c=0UW={0}(2)(1) and (2)UW=R3

2

V is a vector space over FU,W vector subspaces of VUW=VProve or disprove: UW=VDisproof:Let V=R2U={(a0)|aR},W={(0b)|bR}UW=VUW={(a0),(0b)|a,bR}(11)UWUWV

3

V is a vector space over FU,W vector subspaces of VProve or disprove: V:U,W:UW=VProof:Let V be a vector space over FV is also a vector subspace of V{0} is also a vector subspace of VThen V:U=V,W={0}:UW=V

4a

B1={x2+x+1,x22x+1}x?sp(B1)1(x2+x+1)+(1)(x22x+1)=3xα(x2+x+1)+β(x22x+1)=x{α=13β=13xsp(B1)

4b

B2={(111),(121)}(012)?sp(B2)α(111)+β(121)=(012){α+β=0α+2β=1α+β=2(012)sp(B2)

4c

B3={(101),(121)}(111)?sp(B3)α(101)+β(121)=(111){α+β=12β=1α+β=1{α=32β=12(111)sp(B3)

4d

B4={(1234),(2341),(3412),(4123)}(30242224)?sp(B4)α(1234)+β(2341)+γ(3412)+δ(4123)=(30242224){α+2β+3γ+4δ=302α+3β+4γ+δ=243α+4β+γ+2δ=224α+β+2γ+3δ=24(123430234124341222412324)(123430012736028106807101396)(1234300127360044400436156)(1234300127360011100040160)(1234300127360011100014)(123014012080010300014)(12005010020010300014)(10001010020010300014){α=1β=2γ=3δ=4(30242224)sp(B4)

5a

B2={(112),(121),(211)}(111)?sp(B2)α(112)+β(121)+γ(211)=(111)(112112112111)(112101100131)(112101100041)System has exactly one solution(112)+(121)+(211)=(444)14((112)+(121)+(211))=(111){α=14β=14γ=14(111)sp(B2)

5b

{x+y+2z=1x+2y+z=12x+y+z=1x(112)+y(121)+z(211)=(111){x=14y=14z=14

6

V is a vector space over FLet u,v,wV,u0sp({u})=?sp({u,v})sp({u,w})sp({u,v})={αu+βv|α,βF}={αu+βv+0w|α,βF}sp({u,w})={γu+δw|γ,δF}={γu+δw+0v|α,βF}Let vwsp({u,v})sp({u,w})={α1u+α2v+α3w|α1,α2,α3F{α1=α=γα2=β=0α3=δ=0}=={α1u|α1F}=sp({u})Let v=wsp({u,v})sp({u,w})=sp({u,v})sp({u,v})=sp({u,v}){sp({u})=sp({u,v})sp({u,w})vwu=v=wsp({u})sp({u,v})sp({u,w})uv=w

7

V is a vector space over FS1,S2VProve: S1S2sp(S1)sp(S2)Proof:Let v1sp(S1){α1,,αn}F,{s1,,sn}S1:v1=i=1nαisi{s1,,sn}S1S2{s1,,sn}S2{α1,,αn}F,{s1,,sn}S2:v1=i=1nαisiv1sp(S2)sp(S1)sp(S2)

8

V is a vector space over FA,BVWV vector subspace of V

8a

Prove or disprove: sp(AWB)=sp(A)sp(W)sp(B)Disproof:V=R2A={(10)},B={(01)}.W={(00)}ABW={(00),(10),(01)}sp(AWB)=R2sp(A)={(a0)|aR},sp(B)={(0b)|binR},sp(W)={(00)}sp(A)sp(W)sp(B)={(a0),(0b),(00)|a,bR}(11)sp(A)sp(W)sp(B)sp(A)sp(W)sp(B)R2=sp(AWB)sp(AWB)sp(A)sp(W)sp(B)

8b

Prove or disprove: sp(AWB)=(sp(A)+sp(B))sp(W)Disproof:V=R3A={(100)},B={(010)},W={(000),(00x)|xR}AWB={(100),(010),(000),(00x)|xR}sp(AWB)=R3sp(A)={(a00)},sp(B)={(0b0)|bR}sp(A)+sp(B)={(ab0)|a,bR}sp(W)={(00x)|xR}(sp(A)+sp(B))sp(W)={(ab0),(00x)|a,b,xR}(111)(sp(A)+sp(B))sp(W)(sp(A)+sp(B))sp(W)R3=sp(AWB)sp(AWB)(sp(A)+sp(B))sp(W)