Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 6
1
{
u
,
v
}
is a linear independence
w
∈
s
p
(
{
u
,
v
}
)
Prove or disprove:
{
u
,
v
,
w
}
is a linear dependence
Proof:
w
∈
s
p
(
{
u
,
v
}
)
⟹
∃
α
1
,
α
2
∈
F
:
w
=
α
1
u
+
α
2
v
{
u
,
v
}
is a linear independence
α
1
u
+
α
2
v
=
0
⟹
α
1
=
α
2
=
0
Let
β
1
u
+
β
2
v
+
β
3
w
=
0
β
1
u
+
β
2
v
+
β
3
(
α
1
u
+
α
2
v
)
=
0
⟹
β
1
+
β
3
α
1
=
β
2
+
β
3
α
2
=
0
⟹
{
β
1
=
−
β
3
α
1
β
2
=
−
β
3
α
2
⟹
⧸
⟹
{
β
1
=
0
β
2
=
0
β
3
=
0
For example:
Let
α
1
=
1
,
α
2
=
2
,
β
3
=
3
{
β
1
=
−
β
3
=
−
3
β
2
=
−
2
β
3
=
−
6
⟹
{
u
,
v
,
w
}
is a linear dependence
2
Let
V
be a vector space over
F
Let
{
v
1
,
v
2
}
,
{
v
2
,
v
3
}
,
{
v
1
,
v
3
}
be linear independences
Prove or disprove:
{
v
1
,
v
2
,
v
3
}
is a linear independence
Disproof:
Let
V
=
R
2
Let
v
1
=
(
1
0
)
,
v
2
=
(
0
1
)
,
v
3
=
(
1
1
)
{
v
1
,
v
2
}
is a linear independence
{
v
2
,
v
3
}
is a linear independence
{
v
1
,
v
3
}
is a linear independence
v
3
=
v
1
+
v
2
⟹
v
3
∈
s
p
(
{
v
1
,
v
2
}
)
⟹
{
v
1
,
v
2
,
v
3
}
is a linear dependence
Disproved
3
Let
S
=
{
v
1
,
v
2
,
v
3
}
be a linear independence
Let
S
∗
=
{
v
1
,
v
1
+
v
2
,
v
1
+
v
2
+
v
3
}
Is
S
∗
necessarily/always a linear independence?
Solution:
α
1
v
1
+
α
2
v
2
+
α
3
v
3
=
0
⟹
α
1
=
α
2
=
α
3
=
0
β
1
v
1
+
β
2
(
v
1
+
v
2
)
+
β
3
(
v
1
+
v
2
+
v
3
)
=
0
(
β
1
+
β
2
+
β
3
)
v
1
+
(
β
2
+
β
3
)
v
2
+
β
3
v
3
⏟
Linear combination of
S
=
0
⟹
{
β
1
+
β
2
+
β
3
=
0
β
2
+
β
3
=
0
β
3
=
0
⟹
{
β
1
=
0
β
2
=
0
β
3
=
0
⟹
S
∗
is always a linear indendence
4
Let
V
be a vector space over
F
U
,
W
⊆
V
−
vector subspaces of
V
Let
u
,
v
,
w
∈
V
∖
{
0
}
u
∈
U
,
u
∉
W
w
∈
W
v
∈
W
,
∄
α
∈
F
:
v
=
α
w
Prove:
∄
α
1
,
α
2
∈
F
:
v
=
α
1
u
+
α
2
w
Proof:
W
is a vector subspace
⟹
∀
w
1
,
w
2
:
w
1
+
α
w
2
∈
W
Let
∃
α
1
,
α
2
∈
F
:
v
=
α
1
u
+
α
2
w
Let
α
1
=
0
⟹
v
=
α
2
w
−
Contradiction!
⟹
α
1
≠
0
⟹
u
=
v
−
α
2
w
α
1
v
∈
W
,
w
∈
W
⟹
v
+
(
−
α
2
)
w
∈
W
⟹
1
α
1
(
v
+
(
−
α
2
)
w
)
∈
W
⟹
u
∈
W
−
Contradiction!
⟹
∄
α
1
,
α
2
∈
F
:
v
=
α
1
u
+
α
2
w
5
S
=
{
(
k
1
1
)
,
(
0
1
k
)
,
(
0
1
1
)
}
Find
k
such that
S
is a linear dependence
Solution:
α
1
⋅
(
k
1
1
)
+
α
2
⋅
(
0
1
k
)
+
α
3
⋅
(
0
1
1
)
=
0
⟹
{
α
1
k
=
0
α
1
+
α
2
+
α
3
=
0
α
1
+
α
2
k
+
α
3
=
0
(
k
0
0
0
1
1
1
0
1
k
1
0
)
→
(
k
0
0
0
0
1
−
k
1
−
k
0
0
0
1
−
k
0
)
→
(
k
0
0
0
0
1
−
k
0
0
0
0
1
−
k
0
)
{
α
1
k
=
0
α
2
(
1
−
k
)
=
0
α
3
(
1
−
k
)
=
0
⟹
{
α
2
=
α
3
=
0
k
=
0
α
1
=
0
k
=
1
α
1
=
α
2
=
α
3
=
0
otherwise
k
∈
{
0
,
1
}
⟹
S
is a linear dependence
6
Let
V
be a vector space over
F
{
v
1
,
v
2
,
v
3
}
is a linear independence
Prove:
{
v
1
+
v
2
,
v
2
−
v
3
,
v
3
−
2
v
1
}
is a linear independence
Proof:
α
1
v
1
+
α
2
v
2
+
α
3
v
3
=
0
⟹
α
1
=
α
2
=
α
3
=
0
β
1
(
v
1
+
v
2
)
+
β
2
(
v
2
−
v
3
)
+
β
3
(
v
3
−
2
v
1
)
=
0
(
β
1
−
2
β
3
)
v
1
+
(
β
1
+
β
2
)
v
2
+
(
β
3
−
β
2
)
v
3
⏟
Linear combination of
{
v
1
,
v
2
,
v
3
}
=
0
⟹
{
β
1
−
2
β
3
=
0
β
1
+
β
2
=
0
β
3
−
β
2
=
0
(
1
0
−
2
0
1
1
0
0
0
−
1
1
0
)
→
(
1
0
−
2
0
0
1
2
0
0
−
1
1
0
)
→
(
1
0
−
2
0
0
1
2
0
0
0
3
0
)
{
β
1
−
2
β
3
=
0
β
2
+
2
β
3
=
0
3
β
3
=
0
⟹
{
β
1
=
0
β
2
=
0
β
3
=
0
⟹
{
v
1
+
v
2
,
v
2
−
v
3
,
v
3
−
2
v
1
}
is a linear independence
7
Let
v
=
(
a
b
)
,
w
=
(
c
d
)
∈
R
Prove:
{
v
,
w
}
is a linear dependence
⟹
a
d
−
b
c
=
0
Proof:
∃
α
1
≠
α
2
:
α
1
v
+
α
2
w
=
0
α
1
=
0
,
α
2
≠
0
⟹
α
2
w
=
0
⟹
c
=
d
=
0
⟹
a
d
−
b
c
=
0
α
1
≠
0
,
α
2
=
0
⟹
α
2
v
=
0
⟹
a
=
b
=
0
⟹
a
d
−
b
c
=
0
Let
α
1
≠
0
,
α
2
≠
0
⟹
{
a
α
1
+
c
α
2
=
0
b
α
1
+
d
α
2
=
0
a
=
0
⟹
c
=
0
⟹
a
d
−
b
c
=
0
Let
a
≠
0
(
a
c
0
b
d
0
)
→
(
a
c
0
0
d
−
c
⋅
b
a
0
)
{
a
α
1
+
c
α
2
=
0
(
d
−
c
⋅
b
a
)
α
2
=
0
⟹
d
−
c
⋅
b
a
=
0
⟹
a
d
−
b
c
=
0
8
Let
V
be a vector space over
F
S
1
∩
S
2
=
∅
S
1
∪
S
2
is a linear independence over
F
Prove:
s
p
(
S
1
∪
S
2
)
=
s
p
(
S
1
)
⊕
s
p
(
S
2
)
Proof:
Let
S
1
=
{
v
1
,
v
2
,
…
,
v
n
}
Let
S
2
=
{
u
1
,
u
2
,
…
,
u
m
}
S
1
∪
S
2
=
{
v
1
,
…
,
v
n
,
u
1
,
…
,
u
m
}
Let
s
∈
s
p
(
S
1
∪
S
2
)
s
=
∑
i
=
1
n
α
i
v
i
⏟
Linear combination of
S
1
+
∑
i
=
1
m
β
i
u
i
⏟
Linear combination of
S
2
⏟
Linear combination of
S
1
∪
S
2
∑
i
=
1
n
α
i
v
i
∈
s
p
(
S
1
)
∑
i
=
1
m
β
i
u
i
∈
s
p
(
S
2
)
⟹
s
∈
s
p
(
S
1
)
+
s
p
(
S
2
)
⟹
s
p
(
S
1
∪
S
2
)
⊆
s
p
(
S
1
)
+
s
p
(
S
2
)
(
1
)
Let
s
∈
s
p
(
S
1
)
+
s
p
(
S
2
)
⟹
∃
v
∈
S
1
,
u
∈
S
2
:
s
=
v
+
u
v
∈
s
p
(
S
1
)
⟹
v
=
∑
i
=
1
n
α
i
v
i
u
∈
s
p
(
S
2
)
⟹
u
=
∑
i
=
1
m
β
i
u
i
s
=
v
+
u
=
∑
i
=
1
n
α
i
v
i
+
∑
i
=
1
m
β
i
u
i
⏟
Linear combination of
S
1
∪
S
2
⟹
s
∈
s
p
(
S
1
∪
S
2
)
⟹
s
p
(
S
1
)
+
s
p
(
S
2
)
⊆
s
p
(
S
1
∪
S
2
)
(
2
)
(
1
)
∧
(
2
)
⟹
s
p
(
S
1
∪
S
2
)
=
s
p
(
S
1
)
+
s
p
(
S
2
)
s
p
(
S
1
∪
S
2
)
is a vector space
⟹
s
p
(
S
1
)
+
s
p
(
S
2
)
is a vector space
(
3
)
Let
s
∈
s
p
(
S
1
)
∩
s
p
(
S
2
)
s
∈
s
p
(
S
1
)
⟹
s
=
∑
i
=
1
n
α
i
v
i
s
∈
s
p
(
S
2
)
⟹
s
=
∑
i
=
1
m
β
i
u
i
⟹
∑
i
=
1
n
α
i
v
i
=
∑
i
=
1
m
β
i
u
i
⟹
∑
i
=
1
n
α
i
v
i
−
∑
i
=
1
m
β
i
u
i
⏟
Linear combination of
S
1
∪
S
2
=
0
⟹
α
1
=
α
2
=
⋯
=
α
n
=
−
β
1
=
−
β
2
=
⋯
=
−
β
m
=
0
⟹
s
=
∑
i
=
1
n
α
i
v
i
=
0
⟹
s
p
(
S
1
)
∩
s
p
(
S
2
)
=
{
0
}
(
4
)
(
3
)
∧
(
4
)
⟹
s
p
(
S
1
)
+
s
p
(
S
2
)
=
s
p
(
S
1
)
⊕
s
p
(
S
2
)
⟹
s
p
(
S
1
∪
S
2
)
=
s
p
(
S
1
)
⊕
s
p
(
S
2
)