Linear-1 6

1

{u,v} is a linear independencewsp({u,v})Prove or disprove: {u,v,w} is a linear dependenceProof:wsp({u,v})α1,α2F:w=α1u+α2v{u,v} is a linear independenceα1u+α2v=0α1=α2=0Let β1u+β2v+β3w=0β1u+β2v+β3(α1u+α2v)=0β1+β3α1=β2+β3α2=0{β1=β3α1β2=β3α2{β1=0β2=0β3=0For example:Let α1=1,α2=2,β3=3{β1=β3=3β2=2β3=6{u,v,w} is a linear dependence

2

Let V be a vector space over FLet {v1,v2},{v2,v3},{v1,v3} be linear independencesProve or disprove: {v1,v2,v3} is a linear independenceDisproof:Let V=R2Let v1=(10),v2=(01),v3=(11){v1,v2} is a linear independence{v2,v3} is a linear independence{v1,v3} is a linear independencev3=v1+v2v3sp({v1,v2}){v1,v2,v3} is a linear dependenceDisproved

3

Let S={v1,v2,v3} be a linear independenceLet S={v1,v1+v2,v1+v2+v3}Is S necessarily/always a linear independence?Solution:α1v1+α2v2+α3v3=0α1=α2=α3=0β1v1+β2(v1+v2)+β3(v1+v2+v3)=0(β1+β2+β3)v1+(β2+β3)v2+β3v3Linear combination of S=0{β1+β2+β3=0β2+β3=0β3=0{β1=0β2=0β3=0S is always a linear indendence

4

Let V be a vector space over FU,WV vector subspaces of VLet u,v,wV{0}uU,uWwWvW,αF:v=αwProve: α1,α2F:v=α1u+α2wProof:W is a vector subspacew1,w2:w1+αw2WLet α1,α2F:v=α1u+α2wLet α1=0v=α2w Contradiction!α10u=vα2wα1vW,wWv+(α2)wW1α1(v+(α2)w)WuW Contradiction!α1,α2F:v=α1u+α2w

5

S={(k11),(01k),(011)}Find k such that S is a linear dependenceSolution:α1(k11)+α2(01k)+α3(011)=0{α1k=0α1+α2+α3=0α1+α2k+α3=0(k00011101k10)(k00001k1k0001k0)(k00001k00001k0){α1k=0α2(1k)=0α3(1k)=0{α2=α3=0k=0α1=0k=1α1=α2=α3=0otherwisek{0,1}S is a linear dependence

6

Let V be a vector space over F{v1,v2,v3} is a linear independenceProve: {v1+v2,v2v3,v32v1} is a linear independenceProof:α1v1+α2v2+α3v3=0α1=α2=α3=0β1(v1+v2)+β2(v2v3)+β3(v32v1)=0(β12β3)v1+(β1+β2)v2+(β3β2)v3Linear combination of {v1,v2,v3}=0{β12β3=0β1+β2=0β3β2=0(102011000110)(102001200110)(102001200030){β12β3=0β2+2β3=03β3=0{β1=0β2=0β3=0{v1+v2,v2v3,v32v1} is a linear independence

7

Let v=(ab),w=(cd)RProve: {v,w} is a linear dependenceadbc=0Proof:α1α2:α1v+α2w=0α1=0,α20α2w=0c=d=0adbc=0α10,α2=0α2v=0a=b=0adbc=0Let α10,α20{aα1+cα2=0bα1+dα2=0a=0c=0adbc=0Let a0(ac0bd0)(ac00dcba0){aα1+cα2=0(dcba)α2=0dcba=0adbc=0

8

Let V be a vector space over FS1S2=S1S2 is a linear independence over FProve: sp(S1S2)=sp(S1)sp(S2)Proof:Let S1={v1,v2,,vn}Let S2={u1,u2,,um}S1S2={v1,,vn,u1,,um}Let ssp(S1S2)s=i=1nαiviLinear combination of S1+i=1mβiuiLinear combination of S2Linear combination of S1S2i=1nαivisp(S1)i=1mβiuisp(S2)ssp(S1)+sp(S2)sp(S1S2)sp(S1)+sp(S2)(1)Let ssp(S1)+sp(S2)vS1,uS2:s=v+uvsp(S1)v=i=1nαiviusp(S2)u=i=1mβiuis=v+u=i=1nαivi+i=1mβiuiLinear combination of S1S2ssp(S1S2)sp(S1)+sp(S2)sp(S1S2)(2)(1)(2)sp(S1S2)=sp(S1)+sp(S2)sp(S1S2) is a vector spacesp(S1)+sp(S2) is a vector space(3)Let ssp(S1)sp(S2)ssp(S1)s=i=1nαivissp(S2)s=i=1mβiuii=1nαivi=i=1mβiuii=1nαivii=1mβiuiLinear combination of S1S2=0α1=α2==αn=β1=β2==βm=0s=i=1nαivi=0sp(S1)sp(S2)={0}(4)(3)(4)sp(S1)+sp(S2)=sp(S1)sp(S2)sp(S1S2)=sp(S1)sp(S2)