Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 7
1a
V
1
=
{
(
x
y
z
)
∈
R
3
|
z
=
2
y
∧
y
=
x
}
Find the basis and dimension of
V
1
Solution:
V
1
=
{
(
x
y
z
)
∈
R
3
|
y
=
x
∧
z
=
2
x
}
=
{
(
x
x
2
x
)
|
x
∈
R
}
=
s
p
(
{
(
1
1
2
)
}
)
{
(
1
1
2
)
}
is a linear independence
⟹
Basis of
V
1
is
{
(
1
1
2
)
}
and
d
i
m
(
V
1
)
=
1
1b
V
2
=
{
(
x
y
z
)
∈
R
3
|
y
=
z
−
x
}
Find the basis and dimension of
V
2
Solution:
V
2
=
{
(
x
x
−
z
z
)
|
x
,
z
∈
R
}
=
{
x
(
1
1
0
)
+
z
(
0
−
1
1
)
|
x
,
z
∈
R
}
=
s
p
(
{
(
1
1
0
)
,
(
0
−
1
1
)
}
)
{
(
1
1
0
)
,
(
0
−
1
1
)
}
is a linear independence
⟹
Basis of
V
2
is
{
(
1
1
0
)
,
(
0
−
1
1
)
}
and
d
i
m
(
V
2
)
=
2
1c
V
3
=
{
A
∈
R
2
×
2
|
A
T
=
A
}
Find the basis and dimension of
V
3
Solution:
V
3
=
{
(
a
b
b
c
)
|
a
,
b
,
c
∈
R
}
=
{
a
(
1
0
0
0
)
+
b
(
0
1
1
0
)
+
c
(
0
0
0
1
)
|
a
,
b
,
c
∈
R
}
=
=
s
p
(
{
(
1
0
0
0
)
,
(
0
1
1
0
)
,
(
0
0
0
1
)
}
)
{
(
1
0
0
0
)
,
(
0
1
1
0
)
,
(
0
0
0
1
)
}
is a linear independence
⟹
Basis of
V
3
is
{
(
1
0
0
0
)
,
(
0
1
1
0
)
,
(
0
0
0
1
)
}
and
d
i
m
(
V
3
)
=
3
2
V
=
R
3
[
x
]
U
=
{
p
(
x
)
∈
V
|
p
(
x
)
=
x
⋅
p
′
(
x
)
}
2a
Prove:
U
is a vector subspace of
V
Proof:
0
V
=
p
0
p
0
(
x
)
=
0
⟹
p
0
′
(
x
)
=
0
⟹
p
0
(
x
)
=
x
⋅
p
0
′
(
x
)
⟹
0
V
∈
U
Let
p
1
,
p
2
∈
V
,
α
∈
R
(
p
1
(
x
)
+
α
p
2
(
x
)
)
′
=
p
1
′
(
x
)
+
α
p
2
′
(
x
)
=
x
p
1
(
x
)
+
α
x
p
2
(
x
)
=
x
(
p
1
(
x
)
+
α
p
2
(
x
)
)
⟹
∀
p
1
,
p
2
∈
V
,
∀
α
∈
R
:
p
1
+
α
p
2
∈
U
⟹
U
is a vector space
U
⊆
V
⟹
U
is a vector subspace of
V
2b
Find the basis and dimension of
U
Solution:
U
=
{
a
+
b
x
+
c
x
2
+
d
x
3
|
a
,
b
,
c
,
d
,
x
∈
R
a
+
b
x
+
c
x
2
+
d
x
3
=
x
(
b
+
2
c
x
+
3
d
x
2
)
}
=
=
{
a
+
b
x
+
c
x
2
+
d
x
3
|
a
,
b
,
c
,
d
,
x
∈
R
a
=
0
c
=
2
c
d
=
3
d
}
=
{
b
x
|
b
,
x
∈
R
}
∀
p
∈
V
:
p
(
x
)
=
(
1
x
x
2
x
3
)
⋅
(
a
b
c
d
)
Let us denote
p
(
x
)
as
(
a
b
c
d
)
∈
R
4
⟹
U
=
{
b
(
0
1
0
0
)
|
b
∈
R
}
=
s
p
(
{
(
0
1
0
0
)
}
)
{
(
0
1
0
0
)
}
is a linear independence
⟹
Basis of
U
is
{
(
0
1
0
0
)
}
and
d
i
m
(
U
)
=
1
2c
Find a vector subspace
W
of
V
such that
U
⊕
W
=
V
Solution:
Let
U
+
W
=
V
⟹
∀
v
∈
V
:
v
=
u
+
w
Let us use notation from the previous solution:
p
(
x
)
=
(
a
b
c
d
)
∈
R
4
⟹
(
a
b
c
d
)
=
α
(
0
1
0
0
)
⏟
u
+
w
⟹
w
=
(
a
b
c
d
)
−
(
0
α
0
0
)
=
(
a
b
−
α
c
d
)
Let
U
∩
W
=
{
0
}
⟹
∀
u
∈
U
,
w
∈
W
:
[
u
=
w
→
u
=
w
=
0
]
(
0
α
0
0
)
=
(
a
b
−
α
c
d
)
⟺
{
a
=
0
α
=
b
−
α
c
=
0
d
=
0
u
=
w
=
0
⟹
α
=
0
⟹
b
−
α
=
0
For
U
+
W
to be a direct sum,
b
−
α
should be zero
⟹
w
=
(
a
0
c
d
)
⟹
W
=
{
a
(
1
0
0
0
)
+
c
(
0
0
1
0
)
+
d
(
0
0
0
1
)
|
a
,
c
,
d
∈
R
}
W
=
s
p
(
{
(
1
0
0
0
)
,
(
0
0
1
0
)
,
(
0
0
0
1
)
}
)
3
V
=
R
2
[
x
]
V
⊇
W
1
=
s
p
(
{
1
−
x
2
,
x
−
x
2
}
)
V
⊇
W
2
=
{
p
(
x
)
|
p
′
(
1
)
=
0
}
Find the basis and dimension of
W
1
∩
W
2
,
W
1
+
W
2
W
1
=
s
p
(
{
(
1
0
−
1
)
,
(
0
1
−
1
)
}
)
W
2
=
{
a
+
b
x
+
c
x
2
|
b
+
2
c
=
0
}
=
{
(
a
b
c
)
|
a
,
b
,
c
∈
R
c
=
−
b
2
}
=
s
p
(
{
(
1
0
0
)
,
(
0
2
−
1
)
}
)
Solution for
W
1
+
W
2
v
∈
W
1
+
W
2
⟹
v
∈
s
p
(
{
(
1
0
−
1
)
,
(
0
1
−
1
)
,
(
1
0
0
)
,
(
0
2
−
1
)
}
)
(
0
2
−
1
)
=
−
1
(
1
0
−
1
)
+
2
(
0
1
−
1
)
+
1
(
1
0
0
)
⟹
W
1
+
W
2
=
s
p
(
{
(
1
0
−
1
)
,
(
0
1
−
1
)
,
(
1
0
0
)
,
(
0
2
−
1
)
}
)
=
s
p
(
{
(
1
0
−
1
)
,
(
0
1
−
1
)
,
(
1
0
0
)
}
)
{
(
1
0
−
1
)
,
(
0
1
−
1
)
,
(
1
0
0
)
}
is a linear independence
⟹
Basis of
W
1
+
W
2
is
{
(
1
0
−
1
)
,
(
0
1
−
1
)
,
(
1
0
0
)
}
and
d
i
m
(
W
1
+
W
2
)
=
3
Solution for
W
1
∩
W
2
v
∈
W
1
∩
W
2
⟹
v
=
α
(
1
0
−
1
)
+
β
(
0
1
−
1
)
=
γ
(
1
0
0
)
+
δ
(
0
2
−
1
)
α
(
1
0
−
1
)
+
β
(
0
1
−
1
)
=
γ
(
1
0
0
)
+
δ
(
0
2
−
1
)
⟹
α
(
1
0
−
1
)
+
β
(
0
1
−
1
)
−
γ
(
1
0
0
)
−
δ
(
0
2
−
1
)
=
0
(
1
0
−
1
0
0
0
1
0
−
2
0
−
1
−
1
0
1
0
)
→
(
1
0
−
1
0
0
0
1
0
−
2
0
0
−
1
−
1
1
0
)
→
(
1
0
−
1
0
0
0
1
0
−
2
0
0
0
−
1
−
1
0
)
Let
δ
=
−
s
{
α
−
γ
=
0
β
−
2
δ
=
0
−
γ
−
δ
=
0
⟹
{
α
=
s
β
=
−
2
s
γ
=
s
δ
=
−
s
⟹
v
=
s
(
1
0
−
1
)
−
2
s
(
0
1
−
1
)
=
(
s
−
2
s
s
)
⟹
W
1
∩
W
2
=
s
p
(
{
(
1
−
2
1
)
}
)
{
(
1
−
2
1
)
}
is a linear independence
⟹
Basis of
W
1
∩
W
2
is
{
(
1
−
2
1
)
}
and
d
i
m
(
W
1
∩
W
2
)
=
1
4a
Let
V
be a vector space
V
=
{
A
∈
R
3
×
3
|
A
=
A
T
}
Are there four vector subspaces
V
1
,
V
2
,
V
3
,
V
4
of
V
such that
{
0
}
⊂
V
1
⊂
V
2
⊂
V
3
⊂
V
4
⊂
V
?
Solution:
Yes, there are such vector subspaces of
V
:
Let
V
1
=
s
p
(
{
(
1
0
0
0
0
0
0
0
0
)
}
)
,
V
2
=
s
p
(
{
(
1
0
0
0
0
0
0
0
0
)
,
(
0
1
0
1
0
0
0
0
0
)
}
)
V
3
=
s
p
(
{
(
1
0
0
0
0
0
0
0
0
)
,
(
0
1
0
1
0
0
0
0
0
)
,
(
0
0
1
0
1
0
1
0
0
)
}
)
V
4
=
s
p
(
{
(
1
0
0
0
0
0
0
0
0
)
,
(
0
1
0
1
0
0
0
0
0
)
,
(
0
0
1
0
1
0
1
0
0
)
,
(
0
0
0
0
0
1
0
1
0
)
}
)
{
0
}
⊂
V
1
⊂
V
2
⊂
V
3
⊂
V
4
⊂
V
4b
Let
V
be a vector space
V
=
{
A
∈
R
2
×
2
|
A
=
A
T
}
Are there four vector subspaces
V
1
,
V
2
,
V
3
,
V
4
of
V
such that
{
0
}
⊂
V
1
⊂
V
2
⊂
V
3
⊂
V
4
⊂
V
?
Solution:
V
=
{
(
a
b
b
c
)
|
a
,
b
,
c
∈
R
}
=
s
p
(
{
(
1
0
0
0
)
,
(
0
1
1
0
)
,
(
0
0
0
1
)
}
)
⟹
d
i
m
(
V
)
=
3
Let
U
⊂
V
,
B
U
is a basis of
U
Let
d
i
m
(
U
)
=
d
i
m
(
V
)
=
3
|
B
U
|
=
d
i
m
(
V
)
and
B
U
is a linear independence
⟹
s
p
(
B
U
)
=
V
⟹
U
=
V
−
Contradiction!
⟹
[
U
⊂
V
⟹
d
i
m
(
U
)
<
d
i
m
(
V
)
]
V
4
⊂
V
⟹
d
i
m
(
V
4
)
≤
2
V
3
⊂
V
4
⟹
d
i
m
(
V
3
)
≤
1
V
2
⊂
V
3
⟹
d
i
m
(
V
2
)
≤
0
⟹
V
2
=
{
0
}
⟹
∄
V
1
,
V
2
,
V
3
,
V
4
:
{
0
}
⊂
V
1
⊂
V
2
⊂
V
3
⊂
V
4
⊂
V
5
W
=
s
p
(
{
(
0
2
1
)
,
(
1
2
0
)
}
)
,
V
=
s
p
(
{
(
5
4
−
5
)
,
(
0
1
0
)
}
)
5a
Find
W
+
V
Solution:
v
∈
W
+
V
⟹
v
∈
s
p
(
{
(
0
2
1
)
,
(
1
2
0
)
,
(
5
4
−
5
)
,
(
0
1
0
)
}
)
(
5
4
−
5
)
=
−
5
(
0
2
1
)
+
5
(
1
2
0
)
+
4
(
0
1
0
)
⟹
W
+
V
=
s
p
(
{
(
0
2
1
)
,
(
1
2
0
)
,
(
5
4
−
5
)
,
(
0
1
0
)
}
)
=
s
p
(
{
(
0
2
1
)
,
(
1
2
0
)
,
(
0
1
0
)
}
)
(
0
1
0
2
2
1
1
0
0
)
→
(
0
1
0
0
0
1
1
0
0
)
→
I
3
⟹
{
(
0
2
1
)
,
(
1
2
0
)
,
(
0
1
0
)
}
is a linear independence
⟹
W
+
V
=
s
p
(
{
(
0
2
1
)
,
(
1
2
0
)
,
(
0
1
0
)
}
)
5b
Find
W
∩
V
Solution:
v
∈
W
∩
V
⟹
v
=
α
(
0
2
1
)
+
β
(
1
2
0
)
=
γ
(
5
4
−
5
)
+
δ
(
0
1
0
)
⟹
α
(
0
2
1
)
+
β
(
1
2
0
)
−
γ
(
5
4
−
5
)
−
δ
(
0
1
0
)
=
0
(
0
1
−
5
0
2
2
−
4
−
1
1
0
5
0
)
→
(
1
0
5
0
0
1
−
5
0
0
2
−
14
−
1
)
→
(
1
0
5
0
0
1
−
5
0
0
0
4
1
)
Let
γ
=
s
⟹
{
α
=
−
5
s
β
=
5
s
γ
=
s
δ
=
−
4
s
v
=
−
5
s
(
0
2
1
)
+
5
s
(
1
2
0
)
=
(
5
s
0
−
5
s
)
⟹
W
∩
V
=
s
p
(
{
(
1
0
−
1
)
}
)
5c
Is
W
+
V
a direct sum?
Solution:
W
∩
V
≠
{
0
}
⟹
W
+
V
is not a direct sum
6
W
=
s
p
(
{
(
a
b
c
d
)
∈
R
4
|
a
=
d
,
b
=
2
c
}
)
,
V
=
s
p
(
{
(
a
b
c
d
)
∈
R
4
|
b
−
2
c
+
d
=
0
}
)
W
=
s
p
(
{
(
a
2
c
c
a
)
|
a
,
c
∈
R
}
)
=
s
p
(
s
p
(
{
(
1
0
0
1
)
,
(
0
2
1
0
)
}
)
)
=
s
p
(
{
(
1
0
0
1
)
,
(
0
2
1
0
)
}
)
V
=
s
p
(
{
(
a
2
c
−
d
c
d
)
|
a
,
c
,
d
∈
R
}
)
=
s
p
(
s
p
(
{
(
1
0
0
0
)
,
(
0
2
1
0
)
,
(
0
−
1
0
1
)
}
)
)
=
=
s
p
(
{
(
1
0
0
0
)
,
(
0
2
1
0
)
,
(
0
−
1
0
1
)
}
)
6a
Find
W
+
V
Solution:
v
∈
W
+
V
⟹
v
∈
s
p
(
{
(
1
0
0
1
)
,
(
0
2
1
0
)
,
(
1
0
0
0
)
,
(
0
2
1
0
)
,
(
0
−
1
0
1
)
}
)
s
p
(
{
(
1
0
0
1
)
,
(
0
2
1
0
)
,
(
1
0
0
0
)
,
(
0
2
1
0
)
,
(
0
−
1
0
1
)
}
)
=
s
p
(
{
(
1
0
0
1
)
,
(
0
2
1
0
)
,
(
1
0
0
0
)
,
(
0
−
1
0
1
)
}
)
(
1
0
1
0
0
2
0
−
1
0
1
0
0
1
0
0
1
)
→
(
1
0
1
0
0
1
0
0
0
0
−
1
1
0
2
0
−
1
)
→
(
1
0
1
0
0
1
0
0
0
0
1
−
1
0
0
0
1
)
→
I
4
⟹
{
(
1
0
0
1
)
,
(
0
2
1
0
)
,
(
1
0
0
0
)
,
(
0
−
1
0
1
)
}
is a linear independence
⟹
W
+
V
=
s
p
(
{
(
1
0
0
1
)
,
(
0
2
1
0
)
,
(
1
0
0
0
)
,
(
0
−
1
0
1
)
}
)
6b
Find
W
∩
V
Solution:
v
∈
W
∩
V
⟹
v
=
α
(
1
0
0
1
)
+
β
(
0
2
1
0
)
=
γ
(
1
0
0
0
)
+
δ
(
0
2
1
0
)
+
ω
(
0
−
1
0
1
)
⟹
α
(
1
0
0
1
)
+
β
(
0
2
1
0
)
−
γ
(
1
0
0
0
)
−
δ
(
0
2
1
0
)
−
ω
(
0
−
1
0
1
)
=
0
(
1
0
−
1
0
0
0
0
2
0
−
2
1
0
0
1
0
−
1
0
0
1
0
0
0
−
1
0
)
→
(
1
0
−
1
0
0
0
0
1
0
−
1
0
0
0
0
1
0
−
1
0
0
2
0
−
2
1
0
)
→
(
1
0
−
1
0
0
0
0
1
0
−
1
0
0
0
0
1
0
−
1
0
0
0
0
0
1
0
)
Let
δ
=
s
⟹
{
α
=
0
β
=
s
γ
=
0
δ
=
s
ω
=
0
⟹
v
=
s
(
0
2
1
0
)
⟹
W
∩
V
=
s
p
(
{
(
0
2
1
0
)
}
)
6c
Is
W
+
V
a direct sum?
Solution:
W
∩
V
≠
{
0
}
⟹
W
+
V
is not a direct sum
7a
Prove or disprove:
V
=
U
⊕
W
⟹
d
i
m
(
V
)
=
d
i
m
(
U
)
+
d
i
m
(
W
)
Proof:
V
=
U
⊕
W
⟹
U
+
W
=
V
,
U
∩
W
=
{
0
}
d
i
m
(
U
+
W
)
=
d
i
m
(
U
)
+
d
i
m
(
W
)
−
d
i
m
(
U
∩
W
)
U
∩
W
=
{
0
}
⟹
d
i
m
(
U
∩
W
)
=
0
⟹
d
i
m
(
U
+
W
)
=
d
i
m
(
V
)
=
d
i
m
(
U
)
+
d
i
m
(
W
)
7b
Prove or disprove:
d
i
m
(
V
)
=
d
i
m
(
U
)
+
d
i
m
(
W
)
⟹
V
=
U
⊕
W
Disproof:
V
=
R
3
,
U
=
s
p
(
{
(
1
0
0
)
}
)
,
W
=
s
p
(
{
(
1
0
0
)
,
(
0
1
0
)
}
)
d
i
m
(
U
)
=
1
,
d
i
m
(
W
)
=
2
d
i
m
(
V
)
=
3
=
d
i
m
(
U
)
+
d
i
m
(
W
)
U
+
W
=
s
p
(
{
(
1
0
0
)
,
(
1
0
0
)
,
(
0
1
0
)
}
)
=
s
p
(
{
(
1
0
0
)
,
(
0
1
0
)
}
)
=
W
≠
V