Linear-1 7

1a

V1={(xyz)R3|z=2yy=x}Find the basis and dimension of V1Solution:V1={(xyz)R3|y=xz=2x}={(xx2x)|xR}=sp({(112)}){(112)} is a linear independenceBasis of V1 is {(112)} and dim(V1)=1

1b

V2={(xyz)R3|y=zx}Find the basis and dimension of V2Solution:V2={(xxzz)|x,zR}={x(110)+z(011)|x,zR}=sp({(110),(011)}){(110),(011)} is a linear independenceBasis of V2 is {(110),(011)} and dim(V2)=2

1c

V3={AR2×2|AT=A}Find the basis and dimension of V3Solution:V3={(abbc)|a,b,cR}={a(1000)+b(0110)+c(0001)|a,b,cR}==sp({(1000),(0110),(0001)}){(1000),(0110),(0001)} is a linear independenceBasis of V3 is {(1000),(0110),(0001)} and dim(V3)=3

2

V=R3[x]U={p(x)V|p(x)=xp(x)}

2a

Prove: U is a vector subspace of VProof:0V=p0p0(x)=0p0(x)=0p0(x)=xp0(x)0VULet p1,p2V,αR(p1(x)+αp2(x))=p1(x)+αp2(x)=xp1(x)+αxp2(x)=x(p1(x)+αp2(x))p1,p2V,αR:p1+αp2UU is a vector spaceUVU is a vector subspace of V

2b

Find the basis and dimension of USolution:U={a+bx+cx2+dx3|a,b,c,d,xRa+bx+cx2+dx3=x(b+2cx+3dx2)}=={a+bx+cx2+dx3|a,b,c,d,xRa=0c=2cd=3d}={bx|b,xR}pV:p(x)=(1xx2x3)(abcd)Let us denote p(x) as (abcd)R4U={b(0100)|bR}=sp({(0100)}){(0100)} is a linear independenceBasis of U is {(0100)} and dim(U)=1

2c

Find a vector subspace W of V such that UW=VSolution:Let U+W=VvV:v=u+wLet us use notation from the previous solution:p(x)=(abcd)R4(abcd)=α(0100)u+ww=(abcd)(0α00)=(abαcd)Let UW={0}uU,wW:[u=wu=w=0](0α00)=(abαcd){a=0α=bαc=0d=0u=w=0α=0bα=0For U+W to be a direct sum, bα should be zerow=(a0cd)W={a(1000)+c(0010)+d(0001)|a,c,dR}W=sp({(1000),(0010),(0001)})

3

V=R2[x]VW1=sp({1x2,xx2})VW2={p(x)|p(1)=0}Find the basis and dimension of W1W2,W1+W2W1=sp({(101),(011)})W2={a+bx+cx2|b+2c=0}={(abc)|a,b,cRc=b2}=sp({(100),(021)})Solution for W1+W2vW1+W2vsp({(101),(011),(100),(021)})(021)=1(101)+2(011)+1(100)W1+W2=sp({(101),(011),(100),(021)})=sp({(101),(011),(100)}){(101),(011),(100)} is a linear independenceBasis of W1+W2 is {(101),(011),(100)} and dim(W1+W2)=3Solution for W1W2vW1W2v=α(101)+β(011)=γ(100)+δ(021)α(101)+β(011)=γ(100)+δ(021)α(101)+β(011)γ(100)δ(021)=0(101000102011010)(101000102001110)(101000102000110)Let δ=s{αγ=0β2δ=0γδ=0{α=sβ=2sγ=sδ=sv=s(101)2s(011)=(s2ss)W1W2=sp({(121)}){(121)} is a linear independenceBasis of W1W2 is {(121)} and dim(W1W2)=1

4a

Let V be a vector spaceV={AR3×3|A=AT}Are there four vector subspaces V1,V2,V3,V4 of V such that{0}V1V2V3V4V?Solution:Yes, there are such vector subspaces of V:Let V1=sp({(100000000)}),V2=sp({(100000000),(010100000)})V3=sp({(100000000),(010100000),(001010100)})V4=sp({(100000000),(010100000),(001010100),(000001010)}){0}V1V2V3V4V

4b

Let V be a vector spaceV={AR2×2|A=AT}Are there four vector subspaces V1,V2,V3,V4 of V such that{0}V1V2V3V4V?Solution:V={(abbc)|a,b,cR}=sp({(1000),(0110),(0001)})dim(V)=3Let UV,BU is a basis of ULet dim(U)=dim(V)=3|BU|=dim(V) and BU is a linear independencesp(BU)=VU=VContradiction![UVdim(U)<dim(V)]V4Vdim(V4)2V3V4dim(V3)1V2V3dim(V2)0V2={0}V1,V2,V3,V4:{0}V1V2V3V4V

5

W=sp({(021),(120)}),V=sp({(545),(010)})

5a

Find W+VSolution:vW+Vvsp({(021),(120),(545),(010)})(545)=5(021)+5(120)+4(010)W+V=sp({(021),(120),(545),(010)})=sp({(021),(120),(010)})(010221100)(010001100)I3{(021),(120),(010)} is a linear independenceW+V=sp({(021),(120),(010)})

5b

Find WVSolution:vWVv=α(021)+β(120)=γ(545)+δ(010)α(021)+β(120)γ(545)δ(010)=0(015022411050)(1050015002141)(105001500041)Let γ=s{α=5sβ=5sγ=sδ=4sv=5s(021)+5s(120)=(5s05s)WV=sp({(101)})

5c

Is W+V a direct sum?Solution:WV{0}W+V is not a direct sum

6

W=sp({(abcd)R4|a=d,b=2c}),V=sp({(abcd)R4|b2c+d=0})W=sp({(a2cca)|a,cR})=sp(sp({(1001),(0210)}))=sp({(1001),(0210)})V=sp({(a2cdcd)|a,c,dR})=sp(sp({(1000),(0210),(0101)}))==sp({(1000),(0210),(0101)})

6a

Find W+VSolution:vW+Vvsp({(1001),(0210),(1000),(0210),(0101)})sp({(1001),(0210),(1000),(0210),(0101)})=sp({(1001),(0210),(1000),(0101)})(1010020101001001)(1010010000110201)(1010010000110001)I4{(1001),(0210),(1000),(0101)} is a linear independenceW+V=sp({(1001),(0210),(1000),(0101)})

6b

Find WVSolution:vWVv=α(1001)+β(0210)=γ(1000)+δ(0210)+ω(0101)α(1001)+β(0210)γ(1000)δ(0210)ω(0101)=0(101000020210010100100010)(101000010100001010020210)(101000010100001010000010)Let δ=s{α=0β=sγ=0δ=sω=0v=s(0210)WV=sp({(0210)})

6c

Is W+V a direct sum?Solution:WV{0}W+V is not a direct sum

7a

Prove or disprove: V=UWdim(V)=dim(U)+dim(W)Proof:V=UWU+W=V,UW={0}dim(U+W)=dim(U)+dim(W)dim(UW)UW={0}dim(UW)=0dim(U+W)=dim(V)=dim(U)+dim(W)

7b

Prove or disprove: dim(V)=dim(U)+dim(W)V=UWDisproof:V=R3,U=sp({(100)}),W=sp({(100),(010)})dim(U)=1,dim(W)=2dim(V)=3=dim(U)+dim(W)U+W=sp({(100),(100),(010)})=sp({(100),(010)})=WV