Linear-1 8

1

A=(110011352),B=(124035)

1a

Find R(A)Solution:R(A)=sp({R1(A),R2(A),R3(A)})==sp({(110),(011),(352)})(352)=3(110)+2(011)R(A)=sp({(110),(011)})

1b

Find C(A)Solution:C(A)=sp({C1(A),C2(A),C3(A)})==sp({(103),(115),(012)})(115)=(103)+(012)C(A)=sp({(103),(012)})

1c

Find N(A)Solution:N(A)={x|Ax=0}(110001103520)(110001100220)(110001100000){x=sy=sz=sN(A)=sp({(111)})

1d

Find R(B)Solution: R(B)=sp({R1(B),R2(B)})R(B)=sp({(124),(035)})

1e

Find C(B)Solution:C(B)=sp({C1(B),C2(B),C3(B)})==sp({(10),(23),(45)})(102345)(100105)(100100)C(B)=sp({(10),(23)})

1f

Find N(B)Solution:N(B)={x|Bx=0}(12400350){x=2sy=5sz=3sN(B)=sp({(253)})

2

A=(aa1a2aa2aaa2a+1)Determine rank(A) for all values of aFind values of a such that A1Solution:(aa1a2aa2aaa2a+1)(aa10aa2a2002a+2)2a+20(aa00aa20001)aa20(a00010001)a0(100010001)rank(A)=31.a=0A=(001000001)(000000001)a=0rank(A)=12.aa2=0a=a2a=1A=(111111003)(111001003)(111001000)a=1rank(A)=23.2a+2=0a=1A=(111110111)(111021000)a=1rank(A)=2{rank(A)=1a=0rank(A)=2a=±1rank(A)=3otherwiseA1rank(A)=3a{1,0,1}

3

AR4×8rank(A)=4rank(A)=4CF(A)=(1000a15a16a17a180100a25a26a27a280010a35a36a37a380001a45a46a47a48)

3a

Is the set of rows of A a linear dependence or independence?Solution:CF(A) has no zero-rowsSet of rows of A is a linear independence

3b

Is the set of columns of A a linear dependence or independence?Solution:C5(CF(A))=a15C1(CF(A))+a25C2(CF(A))+a35C3(CF(A))+a45C4(CF(A))Set of columns of A is a linear dependence

3c

Find dim(N(A))Solution:rank(A)+dim(N(A))=8dim(N(A))=4

4

ARm×nmnProve: at least one of matrices AAT,ATA is not invertibleProof:Let m<nrank(A)=dim(R(A))m<nATARn×nrank(ATA)rank(A)<nrank(ATA)n(ATA)1Let m>nrank(A)=dim(C(A))n<mAATRm×mrank(AAT)rank(A)<mrank(AAT)m(AAT)1

5

ARn×nA1B={u1,u2,,un} is a basis of RnProve: {Au1,Au2,,Aun} is a linear dependenceProof:Let U=(u1u2un)Rn×nLet M=AUM=(Au1Au2Aun)rank(M)=rank(AU)rank(A)<nn>rank(M)=dim(C(M))=dim(sp({Au1,Au2,,Aun})){Au1,Au2,,Aun} is a linear dependence

6a

A,BFm×nProve: rank(A+B)rank(A)+rank(B)Proof:A+B=(C1(A+B)C2(A+B)Cn(A+B))Let i[1,n]:CiA=Ci(A),CiB=Ci(B)Note that i[1,n]:Ci(A+B)=CiA+CiB{C1(A+B),,Cn(A+B)}sp({C1A,C2A,,CnA,C1B,C2B,,CnB})C(A+B)=sp({C1(A+B),C2(A+B),,Cn(A+B)})C(A+B)sp({C1A,C2A,,CnA,C1B,C2B,,CnB})rank(A+B)=dim(C(A+B))dim(sp({C1A,C2A,,CnA,C1B,C2B,,CnB}))Let us now prove thatdim(sp({C1A,C2A,,CnA,C1B,C2B,,CnB}))rank(A)+rank(B)Let rank(A)=k{C1A,,CkA} that is a linear independence andi[1,n]:CiAsp({C1A,,CkA})Let rank(B)=l{C1B,,ClB} that is a linear independence andi[1,n]:CiBsp({C1B,,ClB}){{C1A,,CnA}sp({C1A,,CkA}){C1B,,CnB}sp({C1B,,ClB}){C1A,,CnA,C1B,,CnB}sp({C1A,,CkA,C1B,,ClB})sp({C1A,,CnA,C1B,,CnB})sp({C1A,,CkA,C1B,,ClB})dim(sp({C1A,,CnA,C1B,,CnB}))dim(sp({C1A,,CkA,C1A,,ClB}))k+l=rank(A)+rank(B)dim(sp({C1A,,CnA,C1B,,CnB}))rank(A)+rank(B)rank(A+B)dim(sp({C1A,,CnA,C1B,,CnB}))rank(A)+rank(B)rank(A+B)rank(A)+rank(B)

6b

A,BFm×nProve: dim(N(A+B))dim(N(A))+dim(N(B))nProof:rank(A)+dim(N(A))=nrank(A+B)rank(A)+rank(B)nrank(A+B)nrank(A)rank(B)nrank(A+B)=dim(N(A+B))nrank(A)rank(B)=dim(N(A))rank(B)=dim(N(A))+dim(N(B))ndim(N(A+B))dim(N(A))+dim(N(B))n

7

AFm×nrank(A)=kProve: A can be written as a sum of k matrices of rank 1Proof:Let CFi=(00Ri(CF(A))00)i[1,m]:rank(CFi)=1rank(A)=kCF(A) has exactly k non-zero rowsCF(A) can be written as:CF(A)=i=1mCFi=i=1kCFi+i=k+1m0CF(A)=P1P2PlA, where Pi is an elementary matrixElementary matrices are invertiblePl1Pl11P11CF(A)=AA=Pl1Pl11P11i=1kCFi==Pl1Pl11P11CF1+Pl1Pl11P11CF2++Pl1Pl11P11CFkMultiplication by an elementary matrix does not affect ranki[1,k]:rank(Pl1Pl11P11)=rank(CFi)=1A can be written as a sum of k matrices of rank 1