Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 8
1
A
=
(
1
1
0
0
1
1
3
5
2
)
,
B
=
(
1
2
4
0
3
5
)
1a
Find
R
(
A
)
Solution:
R
(
A
)
=
s
p
(
{
R
1
(
A
)
,
R
2
(
A
)
,
R
3
(
A
)
}
)
=
=
s
p
(
{
(
1
1
0
)
,
(
0
1
1
)
,
(
3
5
2
)
}
)
(
3
5
2
)
=
3
(
1
1
0
)
+
2
(
0
1
1
)
⟹
R
(
A
)
=
s
p
(
{
(
1
1
0
)
,
(
0
1
1
)
}
)
1b
Find
C
(
A
)
Solution:
C
(
A
)
=
s
p
(
{
C
1
(
A
)
,
C
2
(
A
)
,
C
3
(
A
)
}
)
=
=
s
p
(
{
(
1
0
3
)
,
(
1
1
5
)
,
(
0
1
2
)
}
)
(
1
1
5
)
=
(
1
0
3
)
+
(
0
1
2
)
⟹
C
(
A
)
=
s
p
(
{
(
1
0
3
)
,
(
0
1
2
)
}
)
1c
Find
N
(
A
)
Solution:
N
(
A
)
=
{
x
|
A
x
=
0
}
(
1
1
0
0
0
1
1
0
3
5
2
0
)
→
(
1
1
0
0
0
1
1
0
0
2
2
0
)
→
(
1
1
0
0
0
1
1
0
0
0
0
0
)
⟹
{
x
=
s
y
=
−
s
z
=
s
⟹
N
(
A
)
=
s
p
(
{
(
1
−
1
1
)
}
)
1d
Find
R
(
B
)
Solution:
R
(
B
)
=
s
p
(
{
R
1
(
B
)
,
R
2
(
B
)
}
)
⟹
R
(
B
)
=
s
p
(
{
(
1
2
4
)
,
(
0
3
5
)
}
)
1e
Find
C
(
B
)
Solution:
C
(
B
)
=
s
p
(
{
C
1
(
B
)
,
C
2
(
B
)
,
C
3
(
B
)
}
)
=
=
s
p
(
{
(
1
0
)
,
(
2
3
)
,
(
4
5
)
}
)
(
1
0
2
3
4
5
)
→
(
1
0
0
1
0
5
)
→
(
1
0
0
1
0
0
)
⟹
C
(
B
)
=
s
p
(
{
(
1
0
)
,
(
2
3
)
}
)
1f
Find
N
(
B
)
Solution:
N
(
B
)
=
{
x
|
B
x
=
0
}
(
1
2
4
0
0
3
5
0
)
⟹
{
x
=
−
2
s
y
=
−
5
s
z
=
3
s
⟹
N
(
B
)
=
s
p
(
{
(
−
2
−
5
3
)
}
)
2
A
=
(
a
a
−
1
a
2
a
a
2
−
a
a
a
2
a
+
1
)
Determine
r
a
n
k
(
A
)
for all values of
a
Find values of
a
such that
∃
A
−
1
Solution:
(
a
a
−
1
a
2
a
a
2
−
a
a
a
2
a
+
1
)
→
(
a
a
−
1
0
a
−
a
2
a
2
0
0
2
a
+
2
)
→
2
a
+
2
≠
0
(
a
a
0
0
a
−
a
2
0
0
0
1
)
→
a
−
a
2
≠
0
(
a
0
0
0
1
0
0
0
1
)
→
a
≠
0
(
1
0
0
0
1
0
0
0
1
)
⟹
r
a
n
k
(
A
)
=
3
1.
a
=
0
⟹
A
=
(
0
0
−
1
0
0
0
0
0
1
)
→
(
0
0
0
0
0
0
0
0
1
)
⟹
a
=
0
⟹
r
a
n
k
(
A
)
=
1
2.
a
−
a
2
=
0
⟹
a
=
a
2
⟹
a
=
1
⟹
A
=
(
1
1
−
1
1
1
1
0
0
3
)
→
(
1
1
−
1
0
0
1
0
0
3
)
→
(
1
1
−
1
0
0
1
0
0
0
)
⟹
a
=
1
⟹
r
a
n
k
(
A
)
=
2
3.
2
a
+
2
=
0
⟹
a
=
−
1
⟹
A
=
(
−
1
−
1
−
1
1
−
1
0
−
1
−
1
−
1
)
→
(
−
1
−
1
−
1
0
−
2
−
1
0
0
0
)
⟹
a
=
−
1
⟹
r
a
n
k
(
A
)
=
2
⟹
{
r
a
n
k
(
A
)
=
1
a
=
0
r
a
n
k
(
A
)
=
2
a
=
±
1
r
a
n
k
(
A
)
=
3
otherwise
∃
A
−
1
⟺
r
a
n
k
(
A
)
=
3
⟺
a
∉
{
−
1
,
0
,
1
}
3
A
∈
R
4
×
8
r
a
n
k
(
A
)
=
4
r
a
n
k
(
A
)
=
4
⟹
C
F
(
A
)
=
(
1
0
0
0
a
15
a
16
a
17
a
18
0
1
0
0
a
25
a
26
a
27
a
28
0
0
1
0
a
35
a
36
a
37
a
38
0
0
0
1
a
45
a
46
a
47
a
48
)
3a
Is the set of rows of
A
a linear dependence or independence?
Solution:
C
F
(
A
)
has no zero-rows
⟹
Set of rows of
A
is a linear independence
3b
Is the set of columns of
A
a linear dependence or independence?
Solution:
C
5
(
C
F
(
A
)
)
=
a
15
C
1
(
C
F
(
A
)
)
+
a
25
C
2
(
C
F
(
A
)
)
+
a
35
C
3
(
C
F
(
A
)
)
+
a
45
C
4
(
C
F
(
A
)
)
⟹
Set of columns of
A
is a linear dependence
3c
Find
d
i
m
(
N
(
A
)
)
Solution:
r
a
n
k
(
A
)
+
d
i
m
(
N
(
A
)
)
=
8
⟹
d
i
m
(
N
(
A
)
)
=
4
4
A
∈
R
m
×
n
m
≠
n
Prove: at least one of matrices
A
A
T
,
A
T
A
is not invertible
Proof:
Let
m
<
n
⟹
r
a
n
k
(
A
)
=
d
i
m
(
R
(
A
)
)
≤
m
<
n
A
T
A
∈
R
n
×
n
r
a
n
k
(
A
T
A
)
≤
r
a
n
k
(
A
)
<
n
⟹
r
a
n
k
(
A
T
A
)
≠
n
⟹
∄
(
A
T
A
)
−
1
Let
m
>
n
⟹
r
a
n
k
(
A
)
=
d
i
m
(
C
(
A
)
)
≤
n
<
m
A
A
T
∈
R
m
×
m
r
a
n
k
(
A
A
T
)
≤
r
a
n
k
(
A
)
<
m
⟹
r
a
n
k
(
A
A
T
)
≠
m
⟹
∄
(
A
A
T
)
−
1
5
A
∈
R
n
×
n
∄
A
−
1
B
=
{
u
1
,
u
2
,
…
,
u
n
}
is a basis of
R
n
Prove:
{
A
u
1
,
A
u
2
,
…
,
A
u
n
}
is a linear dependence
Proof:
Let
U
=
(
u
1
u
2
…
u
n
)
∈
R
n
×
n
Let
M
=
A
U
⟹
M
=
(
A
u
1
A
u
2
…
A
u
n
)
r
a
n
k
(
M
)
=
r
a
n
k
(
A
U
)
≤
r
a
n
k
(
A
)
<
n
⟹
n
>
r
a
n
k
(
M
)
=
d
i
m
(
C
(
M
)
)
=
d
i
m
(
s
p
(
{
A
u
1
,
A
u
2
,
…
,
A
u
n
}
)
)
⟹
{
A
u
1
,
A
u
2
,
…
,
A
u
n
}
is a linear dependence
6a
A
,
B
∈
F
m
×
n
Prove:
r
a
n
k
(
A
+
B
)
≤
r
a
n
k
(
A
)
+
r
a
n
k
(
B
)
Proof:
A
+
B
=
(
C
1
(
A
+
B
)
C
2
(
A
+
B
)
…
C
n
(
A
+
B
)
)
Let
∀
i
∈
[
1
,
n
]
:
C
i
A
=
C
i
(
A
)
,
C
i
B
=
C
i
(
B
)
Note that
∀
i
∈
[
1
,
n
]
:
C
i
(
A
+
B
)
=
C
i
A
+
C
i
B
⟹
{
C
1
(
A
+
B
)
,
…
,
C
n
(
A
+
B
)
}
⊆
s
p
(
{
C
1
A
,
C
2
A
,
…
,
C
n
A
,
C
1
B
,
C
2
B
,
…
,
C
n
B
}
)
C
(
A
+
B
)
=
s
p
(
{
C
1
(
A
+
B
)
,
C
2
(
A
+
B
)
,
…
,
C
n
(
A
+
B
)
}
)
⟹
C
(
A
+
B
)
⊆
s
p
(
{
C
1
A
,
C
2
A
,
…
,
C
n
A
,
C
1
B
,
C
2
B
,
…
,
C
n
B
}
)
⟹
r
a
n
k
(
A
+
B
)
=
d
i
m
(
C
(
A
+
B
)
)
≤
d
i
m
(
s
p
(
{
C
1
A
,
C
2
A
,
…
,
C
n
A
,
C
1
B
,
C
2
B
,
…
,
C
n
B
}
)
)
Let us now prove that
d
i
m
(
s
p
(
{
C
1
A
,
C
2
A
,
…
,
C
n
A
,
C
1
B
,
C
2
B
,
…
,
C
n
B
}
)
)
≤
r
a
n
k
(
A
)
+
r
a
n
k
(
B
)
Let
r
a
n
k
(
A
)
=
k
⟹
∃
{
C
1
A
,
…
,
C
k
A
}
that is a linear independence and
∀
i
∈
[
1
,
n
]
:
C
i
A
∈
s
p
(
{
C
1
A
,
…
,
C
k
A
}
)
Let
r
a
n
k
(
B
)
=
l
⟹
∃
{
C
1
B
,
…
,
C
l
B
}
that is a linear independence and
∀
i
∈
[
1
,
n
]
:
C
i
B
∈
s
p
(
{
C
1
B
,
…
,
C
l
B
}
)
{
{
C
1
A
,
…
,
C
n
A
}
⊆
s
p
(
{
C
1
A
,
…
,
C
k
A
}
)
{
C
1
B
,
…
,
C
n
B
}
⊆
s
p
(
{
C
1
B
,
…
,
C
l
B
}
)
⟹
⟹
{
C
1
A
,
…
,
C
n
A
,
C
1
B
,
…
,
C
n
B
}
⊆
s
p
(
{
C
1
A
,
…
,
C
k
A
,
C
1
B
,
…
,
C
l
B
}
)
⟹
s
p
(
{
C
1
A
,
…
,
C
n
A
,
C
1
B
,
…
,
C
n
B
}
)
⊆
s
p
(
{
C
1
A
,
…
,
C
k
A
,
C
1
B
,
…
,
C
l
B
}
)
⟹
d
i
m
(
s
p
(
{
C
1
A
,
…
,
C
n
A
,
C
1
B
,
…
,
C
n
B
}
)
)
≤
d
i
m
(
s
p
(
{
C
1
A
,
…
,
C
k
A
,
C
1
A
,
…
,
C
l
B
}
)
)
⏟
≤
k
+
l
=
r
a
n
k
(
A
)
+
r
a
n
k
(
B
)
⟹
d
i
m
(
s
p
(
{
C
1
A
,
…
,
C
n
A
,
C
1
B
,
…
,
C
n
B
}
)
)
≤
r
a
n
k
(
A
)
+
r
a
n
k
(
B
)
⟹
r
a
n
k
(
A
+
B
)
≤
d
i
m
(
s
p
(
{
C
1
A
,
…
,
C
n
A
,
C
1
B
,
…
,
C
n
B
}
)
)
≤
r
a
n
k
(
A
)
+
r
a
n
k
(
B
)
⟹
r
a
n
k
(
A
+
B
)
≤
r
a
n
k
(
A
)
+
r
a
n
k
(
B
)
6b
A
,
B
∈
F
m
×
n
Prove:
d
i
m
(
N
(
A
+
B
)
)
≥
d
i
m
(
N
(
A
)
)
+
d
i
m
(
N
(
B
)
)
−
n
Proof:
r
a
n
k
(
A
)
+
d
i
m
(
N
(
A
)
)
=
n
r
a
n
k
(
A
+
B
)
≤
r
a
n
k
(
A
)
+
r
a
n
k
(
B
)
⟹
n
−
r
a
n
k
(
A
+
B
)
≥
n
−
r
a
n
k
(
A
)
−
r
a
n
k
(
B
)
n
−
r
a
n
k
(
A
+
B
)
=
d
i
m
(
N
(
A
+
B
)
)
n
−
r
a
n
k
(
A
)
−
r
a
n
k
(
B
)
=
d
i
m
(
N
(
A
)
)
−
r
a
n
k
(
B
)
=
d
i
m
(
N
(
A
)
)
+
d
i
m
(
N
(
B
)
)
−
n
⟹
d
i
m
(
N
(
A
+
B
)
)
≥
d
i
m
(
N
(
A
)
)
+
d
i
m
(
N
(
B
)
)
−
n
7
A
∈
F
m
×
n
r
a
n
k
(
A
)
=
k
Prove:
A
can be written as a sum of
k
matrices of rank
1
Proof:
Let
C
F
i
=
(
0
⋮
0
R
i
(
C
F
(
A
)
)
0
⋮
0
)
∀
i
∈
[
1
,
m
]
:
r
a
n
k
(
C
F
i
)
=
1
r
a
n
k
(
A
)
=
k
⟹
C
F
(
A
)
has exactly
k
non-zero rows
⟹
C
F
(
A
)
can be written as:
C
F
(
A
)
=
∑
i
=
1
m
C
F
i
=
∑
i
=
1
k
C
F
i
+
∑
i
=
k
+
1
m
0
C
F
(
A
)
=
P
1
P
2
…
P
l
A
,
where
P
i
is an elementary matrix
Elementary matrices are invertible
⟹
P
l
−
1
P
l
−
1
−
1
…
P
1
−
1
C
F
(
A
)
=
A
⟹
A
=
P
l
−
1
P
l
−
1
−
1
…
P
1
−
1
∑
i
=
1
k
C
F
i
=
=
P
l
−
1
P
l
−
1
−
1
…
P
1
−
1
C
F
1
+
P
l
−
1
P
l
−
1
−
1
…
P
1
−
1
C
F
2
+
⋯
+
P
l
−
1
P
l
−
1
−
1
…
P
1
−
1
C
F
k
Multiplication by an elementary matrix does not affect rank
⟹
∀
i
∈
[
1
,
k
]
:
r
a
n
k
(
P
l
−
1
P
l
−
1
−
1
…
P
1
−
1
)
=
r
a
n
k
(
C
F
i
)
=
1
⟹
A
can be written as a sum of
k
matrices of rank
1