Linear-1 9

1a

T:R3R3T((xyz))=(xx+yx+y+z)Determine whether T is a linear transformationIf yes, find basis and dim of Im(T) and ker(T)Solution:Let u,vR3,αRT(u)=(u1u1+u2u1+u2+u3),αT(v)=α(v1v1+v2v1+v2+v3)T(u)+αT(v)=T(u+αv)=(u1+αv1(u1+u2)+α(v1+v2)(u1+u2+u3)+α(v1+v2+v3))T is a linear transformationIm(T)={uR3|vR3:T(v)=u}={(xx+yx+y+z)|x,y,zR}=={x(111)+y(011)+z(001)|x,y,zR}=sp({(111),(011),(001)}){(111),(011),(001)} is a linear independence{(111),(011),(001)} is a basis of Im(T) and dim(Im(T))=3dim(Im(T))+dim(ker(T))=dim(R3)=3dim(ker(T))=0 is a basis of ker(T) and dim(ker(T))=0

1b

T:R2[x]R2T(P)=(P(0)P(0))Determine whether T is a linear transformationIf yes, find basis and dim of Im(T) and ker(T)Solution:PR2[x]P(x)=a+bx+cx2P(x)=b+2cxP(0)=a,P(0)=bLet p1,p2R2[x],αRT(p1+αp2)=((p1+αp2)(0)(p1+αp2)(0))=(p1(0)+αp2(0)p1(0)+αp2(0))=(a1+αa2b1+αb2)=T(p1)+αT(p2)T is a linear transformationIm(T)={uR2|PR2[x]:T(P)=u}={(ab)|a,bR}=R2=sp({(10),(01)}){(10),(01)} is a linear independence{(10),(01)} is a basis of Im(T) and dim(Im(T))=2ker(T)={vR2[x]|T(v)=0}={a+bx+cx2|{a=0b=0a,b,cR}={cx2|cR}=sp({x2}){x2} is a linear independence{x2} is a basis of ker(T) and dim(ker(T))=1

1c

S={(ab0c)R2×2}B=(1111)T:SR2×2T(A)=ABDetermine whether T is a linear transformationIf yes, find basis and dim of Im(T) and ker(T)Solution:T(A)=AB=(ab0c)(1111)=(a+ba+bcc)Let A1,A2S,αRT(A1+αA2)=(A1+αA2)B=A1B+αA2B=T(A1)+αT(A2)T is a linear transformationIm(T)={CR2×2|AS:T(A)=C}={(a+ba+bcc)|a,b,cR}=={(a+b)(1100)+c(0011)|a,b,cR}=sp({(1100),(0011)}){(1100),(0011)} is a linear independence{(1100),(0011)} is a basis of Im(T) and dim(Im(T))=2ker(T)={AS|T(A)=0}={(ab0c)|{a+b=0c=0a,b,cR}={(aa00)|aR}={a(1100)|aR}=sp({(1100)}){(1100)} is a linear independence{(1100)} is a basis of ker(T) and dim(ker(T))=1

2a

Prove or disprove:  a non-invertible linear transformation T:R3R3 such that:T=T3T2Proof:A=(000010001)Let T(v)=AvT2(v)=T(T(v))=AAv=A2vT3(v)=T(T(T(v)))=AAAv=A3vA2=(000010001)ATT2A3=(000010001)=AT=T3

2b

Prove or disprove:  different non-invertible linear transformations S,T:R3R3such that: STTS=0Proof:Let A=(000010001),B=(000010001)Let T(v)=Av,S(v)=BvABTSAB=BA=(000010001)vR3:(STTS)(v)=BAvABv=(BAAB)v=0STTS=0

3

Let W=R2×2,V=R2[x]Determine whether exists a linear transformation T:VW

3a

Such that: T(x2+1)=(0205),T(x1)=(1002),T(x+1)=(1234)Solution:Let p(x)Vp(x)=a+bx+cx2=(abc)x2+1=(101),x1=(110),x+1=(110){(101),(110),(110)} is a linear independence of size 3{x2+1,x1,x+1} is a linear independence of size 3dim(R2[x])=3{x2+1,x1,x+1} is a basis of R2[x]By the "definition theorem" there exists such unique linear transformation T

3b

Such that: T(2x)=(1235),T(x1)=(1002),T(x+1)=(1234)Solution:(x1)+(x+1)=2xT(x1)+T(x+1)=(2232)T(2x)T is not a linear tranformation

3c

Such that: T(2x)=(2232),T(x1)=(1002),T(x+1)=(1234)Solution:(x1)+(x+1)=2xT(x1)+T(x+1)=T(2x)x2 does not depend on x1,x+1,2xT(x2) does not depend on T(x1),T(x+1),T(2x)Let T(x2)=0{x1,x+1,x2} is a basis of R2[x]By the "definition theorem" there exists such linear transformation

4

Let V,W be vector spaces over Fdim(V)dim(W)Prove:  a linear transformation T:VW that is injectiveProof:Let BV={v1,v2,,vn} be a basis of VLet BW={w1,w2,,wm} be a basis of WnmLet i[1,n]:T(vi)=wi By the "definition theorem": Im(T)=sp({w1,w2,,wn}){w1,w2,,wn}BW{w1,w2,,wn} is a linear independenceT(v)=T(i=1nαivi)=i=1nαiT(vi)=i=1nαiwilinear combination of {w1,w2,,wn}T(v)=0i=1nαiwi=0α1=α2==αn=0v=i=1nαivi=0ker(T)={0}T is injective

5

Let V,W be vector spaces over Fdim(V)dim(W)Prove:  a linear transformation T:VW that is surjectiveProof:Let BV={v1,v2,,vn} be a basis of VLet BW={w1,w2,,wm} be a basis of WnmLet i[1,m]:T(vi)=wiLet i[m+1,n]:T(vi)=0Im(T)=sp({T(v1),T(v2),,T(vn)})=sp({w1,w2,,wm,0,,0})=sp({w1,w2,,wm})=WIm(T)=WT is surjective

6

Let V,W,U be vector spaces over FS,R:VW,T:WU are linear transformationsProve: T(S+R)=TS+TRProof:Let vV(T(S+R))(v)=T((S+R)(v))=T(S(v)+R(v))S(v),R(v)W,w1,w2W:T(w1+w2)=T(w1)+T(w2)T(S(v)+R(v))=T(S(v))+T(R(v))=(TS)(v)+(TR)(v)vV:(T(S+R))(v)=(TS)(v)+(TR)(v)T(S+R)=TS+TR