Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 9
1a
T
:
R
3
→
R
3
T
(
(
x
y
z
)
)
=
(
x
x
+
y
x
+
y
+
z
)
Determine whether
T
is a linear transformation
If yes, find basis and dim of
I
m
(
T
)
and
k
e
r
(
T
)
Solution:
Let
u
,
v
∈
R
3
,
α
∈
R
T
(
u
)
=
(
u
1
u
1
+
u
2
u
1
+
u
2
+
u
3
)
,
α
T
(
v
)
=
α
(
v
1
v
1
+
v
2
v
1
+
v
2
+
v
3
)
T
(
u
)
+
α
T
(
v
)
=
T
(
u
+
α
v
)
=
(
u
1
+
α
v
1
(
u
1
+
u
2
)
+
α
(
v
1
+
v
2
)
(
u
1
+
u
2
+
u
3
)
+
α
(
v
1
+
v
2
+
v
3
)
)
⟹
T
is a linear transformation
I
m
(
T
)
=
{
u
∈
R
3
|
∃
v
∈
R
3
:
T
(
v
)
=
u
}
=
{
(
x
x
+
y
x
+
y
+
z
)
|
x
,
y
,
z
∈
R
}
=
=
{
x
(
1
1
1
)
+
y
(
0
1
1
)
+
z
(
0
0
1
)
|
x
,
y
,
z
∈
R
}
=
s
p
(
{
(
1
1
1
)
,
(
0
1
1
)
,
(
0
0
1
)
}
)
{
(
1
1
1
)
,
(
0
1
1
)
,
(
0
0
1
)
}
is a linear independence
⟹
{
(
1
1
1
)
,
(
0
1
1
)
,
(
0
0
1
)
}
is a basis of
I
m
(
T
)
and
d
i
m
(
I
m
(
T
)
)
=
3
d
i
m
(
I
m
(
T
)
)
+
d
i
m
(
k
e
r
(
T
)
)
=
d
i
m
(
R
3
)
=
3
⟹
d
i
m
(
k
e
r
(
T
)
)
=
0
⟹
∅
is a basis of
k
e
r
(
T
)
and
d
i
m
(
k
e
r
(
T
)
)
=
0
1b
T
:
R
2
[
x
]
→
R
2
T
(
P
)
=
(
P
(
0
)
P
′
(
0
)
)
Determine whether
T
is a linear transformation
If yes, find basis and dim of
I
m
(
T
)
and
k
e
r
(
T
)
Solution:
P
∈
R
2
[
x
]
⟹
P
(
x
)
=
a
+
b
x
+
c
x
2
P
′
(
x
)
=
b
+
2
c
x
⟹
P
(
0
)
=
a
,
P
′
(
0
)
=
b
Let
p
1
,
p
2
∈
R
2
[
x
]
,
α
∈
R
T
(
p
1
+
α
p
2
)
=
(
(
p
1
+
α
p
2
)
(
0
)
(
p
1
+
α
p
2
)
′
(
0
)
)
=
(
p
1
(
0
)
+
α
p
2
(
0
)
p
1
′
(
0
)
+
α
p
2
′
(
0
)
)
=
(
a
1
+
α
a
2
b
1
+
α
b
2
)
=
T
(
p
1
)
+
α
T
(
p
2
)
⟹
T
is a linear transformation
I
m
(
T
)
=
{
u
∈
R
2
|
∃
P
∈
R
2
[
x
]
:
T
(
P
)
=
u
}
=
{
(
a
b
)
|
a
,
b
∈
R
}
=
R
2
=
s
p
(
{
(
1
0
)
,
(
0
1
)
}
)
{
(
1
0
)
,
(
0
1
)
}
is a linear independence
⟹
{
(
1
0
)
,
(
0
1
)
}
is a basis of
I
m
(
T
)
and
d
i
m
(
I
m
(
T
)
)
=
2
k
e
r
(
T
)
=
{
v
∈
R
2
[
x
]
|
T
(
v
)
=
0
}
=
{
a
+
b
x
+
c
x
2
|
{
a
=
0
b
=
0
a
,
b
,
c
∈
R
}
=
{
c
x
2
|
c
∈
R
}
=
s
p
(
{
x
2
}
)
{
x
2
}
is a linear independence
⟹
{
x
2
}
is a basis of
k
e
r
(
T
)
and
d
i
m
(
k
e
r
(
T
)
)
=
1
1c
S
=
{
(
a
b
0
c
)
∈
R
2
×
2
}
B
=
(
1
1
1
1
)
T
:
S
→
R
2
×
2
T
(
A
)
=
A
B
Determine whether
T
is a linear transformation
If yes, find basis and dim of
I
m
(
T
)
and
k
e
r
(
T
)
Solution:
T
(
A
)
=
A
B
=
(
a
b
0
c
)
(
1
1
1
1
)
=
(
a
+
b
a
+
b
c
c
)
Let
A
1
,
A
2
∈
S
,
α
∈
R
T
(
A
1
+
α
A
2
)
=
(
A
1
+
α
A
2
)
B
=
A
1
B
+
α
A
2
B
=
T
(
A
1
)
+
α
T
(
A
2
)
⟹
T
is a linear transformation
I
m
(
T
)
=
{
C
∈
R
2
×
2
|
∃
A
∈
S
:
T
(
A
)
=
C
}
=
{
(
a
+
b
a
+
b
c
c
)
|
a
,
b
,
c
∈
R
}
=
=
{
(
a
+
b
)
(
1
1
0
0
)
+
c
(
0
0
1
1
)
|
a
,
b
,
c
∈
R
}
=
s
p
(
{
(
1
1
0
0
)
,
(
0
0
1
1
)
}
)
{
(
1
1
0
0
)
,
(
0
0
1
1
)
}
is a linear independence
⟹
{
(
1
1
0
0
)
,
(
0
0
1
1
)
}
is a basis of
I
m
(
T
)
and
d
i
m
(
I
m
(
T
)
)
=
2
k
e
r
(
T
)
=
{
A
∈
S
|
T
(
A
)
=
0
}
=
{
(
a
b
0
c
)
|
{
a
+
b
=
0
c
=
0
a
,
b
,
c
∈
R
}
=
{
(
a
−
a
0
0
)
|
a
∈
R
}
=
{
a
(
1
−
1
0
0
)
|
a
∈
R
}
=
s
p
(
{
(
1
−
1
0
0
)
}
)
{
(
1
−
1
0
0
)
}
is a linear independence
⟹
{
(
1
−
1
0
0
)
}
is a basis of
k
e
r
(
T
)
and
d
i
m
(
k
e
r
(
T
)
)
=
1
2a
Prove or disprove:
∃
a non-invertible linear transformation
T
:
R
3
→
R
3
such that:
T
=
T
3
≠
T
2
Proof:
A
=
(
0
0
0
0
1
0
0
0
−
1
)
Let
T
(
v
)
=
A
v
T
2
(
v
)
=
T
(
T
(
v
)
)
=
A
A
v
=
A
2
v
T
3
(
v
)
=
T
(
T
(
T
(
v
)
)
)
=
A
A
A
v
=
A
3
v
A
2
=
(
0
0
0
0
1
0
0
0
1
)
≠
A
⟹
T
≠
T
2
A
3
=
(
0
0
0
0
1
0
0
0
−
1
)
=
A
⟹
T
=
T
3
2b
Prove or disprove:
∃
different non-invertible linear transformations
S
,
T
:
R
3
→
R
3
such that:
S
T
−
T
S
=
0
Proof:
Let
A
=
(
0
0
0
0
1
0
0
0
−
1
)
,
B
=
(
0
0
0
0
−
1
0
0
0
1
)
Let
T
(
v
)
=
A
v
,
S
(
v
)
=
B
v
A
≠
B
⟹
T
≠
S
A
B
=
B
A
=
(
0
0
0
0
−
1
0
0
0
−
1
)
⟹
∀
v
∈
R
3
:
(
S
T
−
T
S
)
(
v
)
=
B
A
v
−
A
B
v
=
(
B
A
−
A
B
)
v
=
0
⟹
S
T
−
T
S
=
0
3
Let
W
=
R
2
×
2
,
V
=
R
2
[
x
]
Determine whether exists a linear transformation
T
:
V
→
W
3a
Such that:
T
(
x
2
+
1
)
=
(
0
2
0
−
5
)
,
T
(
x
−
1
)
=
(
1
0
0
−
2
)
,
T
(
x
+
1
)
=
(
1
2
3
4
)
Solution:
Let
p
(
x
)
∈
V
p
(
x
)
=
a
+
b
x
+
c
x
2
=
(
a
b
c
)
x
2
+
1
=
(
1
0
1
)
,
x
−
1
=
(
−
1
1
0
)
,
x
+
1
=
(
1
1
0
)
{
(
1
0
1
)
,
(
−
1
1
0
)
,
(
1
1
0
)
}
is a linear independence of size
3
⟹
{
x
2
+
1
,
x
−
1
,
x
+
1
}
is a linear independence of size
3
d
i
m
(
R
2
[
x
]
)
=
3
⟹
{
x
2
+
1
,
x
−
1
,
x
+
1
}
is a basis of
R
2
[
x
]
⟹
By the "definition theorem" there exists such unique linear transformation
T
3b
Such that:
T
(
2
x
)
=
(
1
2
−
3
−
5
)
,
T
(
x
−
1
)
=
(
1
0
0
−
2
)
,
T
(
x
+
1
)
=
(
1
2
3
4
)
Solution:
(
x
−
1
)
+
(
x
+
1
)
=
2
x
T
(
x
−
1
)
+
T
(
x
+
1
)
=
(
2
2
3
2
)
≠
T
(
2
x
)
⟹
T
is not a linear tranformation
3c
Such that:
T
(
2
x
)
=
(
2
2
3
2
)
,
T
(
x
−
1
)
=
(
1
0
0
−
2
)
,
T
(
x
+
1
)
=
(
1
2
3
4
)
Solution:
(
x
−
1
)
+
(
x
+
1
)
=
2
x
T
(
x
−
1
)
+
T
(
x
+
1
)
=
T
(
2
x
)
x
2
does not depend on
x
−
1
,
x
+
1
,
2
x
⟹
T
(
x
2
)
does not depend on
T
(
x
−
1
)
,
T
(
x
+
1
)
,
T
(
2
x
)
Let
T
(
x
2
)
=
0
{
x
−
1
,
x
+
1
,
x
2
}
is a basis of
R
2
[
x
]
⟹
By the "definition theorem" there exists such linear transformation
4
Let
V
,
W
be vector spaces over
F
d
i
m
(
V
)
≤
d
i
m
(
W
)
Prove:
∃
a linear transformation
T
:
V
→
W
that is injective
Proof:
Let
B
V
=
{
v
1
,
v
2
,
…
,
v
n
}
be a basis of
V
Let
B
W
=
{
w
1
,
w
2
,
…
,
w
m
}
be a basis of
W
n
≤
m
Let
∀
i
∈
[
1
,
n
]
:
T
(
v
i
)
=
w
i
⟹
By the "definition theorem":
I
m
(
T
)
=
s
p
(
{
w
1
,
w
2
,
…
,
w
n
}
)
{
w
1
,
w
2
,
…
,
w
n
}
⊆
B
W
⟹
{
w
1
,
w
2
,
…
,
w
n
}
is a linear independence
T
(
v
)
=
T
(
∑
i
=
1
n
α
i
v
i
)
=
∑
i
=
1
n
α
i
T
(
v
i
)
=
∑
i
=
1
n
α
i
w
i
−
linear combination of
{
w
1
,
w
2
,
…
,
w
n
}
T
(
v
)
=
0
⟹
∑
i
=
1
n
α
i
w
i
=
0
⟹
α
1
=
α
2
=
⋯
=
α
n
=
0
⟹
v
=
∑
i
=
1
n
α
i
v
i
=
0
⟹
k
e
r
(
T
)
=
{
0
}
⟹
T
is injective
5
Let
V
,
W
be vector spaces over
F
d
i
m
(
V
)
≥
d
i
m
(
W
)
Prove:
∃
a linear transformation
T
:
V
→
W
that is surjective
Proof:
Let
B
V
=
{
v
1
,
v
2
,
…
,
v
n
}
be a basis of
V
Let
B
W
=
{
w
1
,
w
2
,
…
,
w
m
}
be a basis of
W
n
≥
m
Let
∀
i
∈
[
1
,
m
]
:
T
(
v
i
)
=
w
i
Let
∀
i
∈
[
m
+
1
,
n
]
:
T
(
v
i
)
=
0
I
m
(
T
)
=
s
p
(
{
T
(
v
1
)
,
T
(
v
2
)
,
…
,
T
(
v
n
)
}
)
=
s
p
(
{
w
1
,
w
2
,
…
,
w
m
,
0
,
…
,
0
}
)
=
s
p
(
{
w
1
,
w
2
,
…
,
w
m
}
)
=
W
I
m
(
T
)
=
W
⟹
T
is surjective
6
Let
V
,
W
,
U
be vector spaces over
F
S
,
R
:
V
→
W
,
T
:
W
→
U
are linear transformations
Prove:
T
∘
(
S
+
R
)
=
T
∘
S
+
T
∘
R
Proof:
Let
v
∈
V
(
T
∘
(
S
+
R
)
)
(
v
)
=
T
(
(
S
+
R
)
(
v
)
)
=
T
(
S
(
v
)
+
R
(
v
)
)
S
(
v
)
,
R
(
v
)
∈
W
,
∀
w
1
,
w
2
∈
W
:
T
(
w
1
+
w
2
)
=
T
(
w
1
)
+
T
(
w
2
)
⟹
T
(
S
(
v
)
+
R
(
v
)
)
=
T
(
S
(
v
)
)
+
T
(
R
(
v
)
)
=
(
T
∘
S
)
(
v
)
+
(
T
∘
R
)
(
v
)
⟹
∀
v
∈
V
:
(
T
∘
(
S
+
R
)
)
(
v
)
=
(
T
∘
S
)
(
v
)
+
(
T
∘
R
)
(
v
)
⟹
T
∘
(
S
+
R
)
=
T
∘
S
+
T
∘
R