Linear-2 1

1a

Calculate determinant using permutationsA=(315406135)R3×3S3=123+132213231+312+321|A|=σS3sgn(σ)i=13aiσ(i)==a11a22a33a11a23a32a12a21a33+a12a23a31+a13a21a32a13a22a31==05420+(6)+600=20|A|=20

1b

Calculate determinant using permutationsA=(263510364)Z73×3S3=123+132213231+312+321|A|=σS3sgn(σ)i=13aiσ(i)==a11a22a33a11a23a32a12a21a33+a12a23a31+a13a21a32a13a22a31==214206654+603+356313==101+0+62=4|A|=4

2a

Calculate determinant using minorsA=(1205031841690723)R4×4Let us decompose the determinant into minors by first column|A|=i=14(1)i+1ai1|Mi1(A)|==1|M11(A)|0|M12(A)|+4|M13(A)|0|M14(A)||M11(A)|=|318169723|=54+6316+354336=286|M13(A)|=|205318723|=6+0+3003235=31|A|=1(286)+4(31)=410

2b

Calculate determinant using minorsA=(130212i82i0026043)C4×4Let us decompose the determinant into minors by third row|A|=j=1n(1)3+ja3j|M3j(A)|==2i|M31(A)|0|M32(A)|+0|M33(A)|(2)|M34(A)|=|M31(A)|=|3022i8043|=9i+1696=9i80|M34(A)|=|13012i604|=8+18i12=18i4|A|=2i(9i80)+2(18i4)=18160i+36i8=26124i|A|=26124i

3a

Calculate determinant using Gaussian eliminationA=(12340121135023033)R4×4(12340121135023033)R42R1R3R1(12340121012401625)R4+R2R3R2(12340121000500426)R3R4(12340121004260005)=AU|AU|=20|A|=|AU|=20

3b

Calculate determinant using Gaussian eliminationA=(13579118123)Z133×3(13579118123)R3+5R1R2+6R1(135012012)R3+(1)R2(135012000)=AU|AU|=0|A|=|AU|=0

4a

Prove or disprove: det(A+B)=det(A)+det(B)Disproof:A=(1000),B=(0001)det(A+B)=1det(A)=det(B)=0det(A+B)det(A)+det(B)

4b

Let ACn×nProve or disprove: det(A)=det(AT)Proof:(a+bi)+(c+di)=a+c+(b+d)i==a+c(b+d)i=abi+cdi=a+bi+c+di(a+bi)(c+di)=acbd+(ad+bc)i==acbd(ad+bc)i=a(cdi)b(d+ci)=a(cdi)+bi(dic)==(abi)(cdi)=a+bic+didet(A)=σSnsgn(σ)i=1naiσ(i)=σSnsgn(σ)i=1naiσ(i)==σSnsgn(σ)i=1naiσ(i)=σSnsgn(σ)i=1n(AT)σ(i)iLet i<j:σ(i)>σ(j)σ1(σ(i))=i<j=σ1(σ(j))sgn(σ)=sgn(σ1)σSnsgn(σ)i=1n(AT)σ(i)i=σ1Snsgn(σ1)j=1n(AT)jσ1(j)=det(AT)det(A)=det(AT)

4c

Let AFm×nProve or disprove: det(AAT)=det(ATA)Disproof:A=(100010)AT=(100100)AAT=(1001)ATA=(100010000)det(AAT)=10=det(ATA)

4d

Let AFn×nProve or disprove: i,j[1,n]:|Mij(A)|=0rank(A)n2Disproof for n=1:n=1rank(A)0=n1Proof for n2:Let rank(A)=n|A|0i,j[1,n]:|Mij(A)|0Contradiction!Let rank(A)=n1There exists exactly one column that is linearly dependant on the othersLet Ck(A) be linearly dependant on the othersLet Ak=(C1(A)||Ck1(A)||Ck+1(A)||Cn(A)||)C(A)=sp({Ci(A)}i[1,n])=sp({Ci(A)}i[1,n]{Ck(A)})=C(Ak)rank(Ak)=n1AFn×n1There exists exactly one row that is linearly dependant on othersLet Rj(Ak) be linearly dependant on the othersLet Ajk=(R1(Ak)Rj1(Ak)Rj+1(Ak)Rn(Ak))R(Ak)=sp({Ri(Ak)}i[1,n]{Rj(Ak)})=R(Ajk)rank(Ajk)=n1AjkFn1×n1|Ajk|0Ajk=Mjk(A)|Mjk(A)|0Contradiction!rank(A)n2

5a

Prove: AR3×3:A2=(101010001)Proof:Let AR3×3:A2=(101010001)|A2|=|101010001|=1|1001|=1|A2|=|A|20R|A|2=1Contradiction!AR3×3:A2=(101010001)

5b

Is there such matrix in C3×3?Solution:A=(10120i0001)A2=(101010001)

6

Let ARn×n,aij={1j2i1(modn)0otherwise

6a

Find all n for which det(A)=0Solution:1in22i2n<2n+1j=nj0modn(2i1)0modn2i=n+1{n is oddi=n+12[n is evenCn(A)=0det(A)=0]Let n be oddLet j[1,n]j(modn)[0,n1]2i1{1,3,5,,n,n+2,n+4,n+(n1)}2i1(modn)[0,n1]i[1,n]:j2i1(modn)Let i1i2[1,n]:{j2i11(modn)j2i21(modn)Let i1<i2 WLOG2i112i21(modn)2i11=2i21+kn2i2=2i1+kn,kN0i1i22i12i2k02(i2i1)>0kn>0k>02i2=2i1+knkn is evenk2Let k=2a,aNi2=i1+ann+1i1+annContradiction!!i[1,n]:j2i1(modn)In each column there is exactly one 1Let j12i11(modn)Let j22i21(modn)j1j2j1j2(modn)2i112i21(modn)i1i2In each row there is exacly one 1det(A)=±1det(A)=0n is even

6b

Calculate det(A) for n=3,5,7,9Solution:Let us find all positions where 1’s areAnd calculate the sign of permutation for these positionsAccording to 6a, determinant is going to be (1) or 1 based on this signn=3{i=1j=1i=2j=3i=3j=21,3,2det(A)=1n=5{i=1j=1i=2j=3i=3j=5i=4j=2i=5j=41,3,5,2,4det(A)=1n=7{i=1j=1i=2j=3i=3j=5i=4j=7i=5j=2i=6j=4i=7j=61,3,5,7,2,4,6det(A)=1n=9{i=1j=1i=2j=3i=3j=5i=4j=7i=5j=9i=6j=2i=7j=4i=8j=6i=9j=81,3,5,7,9,2,4,6,8det(A)=1

6 bonus

Prove: det(A)=1[8(n1)8(n+1)Proof:n is evendet(A)=0det(A)0n is oddLet n be oddLet f(i)=2i1(modn)Im(f)=[0,n1]f is not a permutation of [1,n]i[1,n]:f(i)nLet σ0(i)={n2i1(modn)=02i1(modn)otherwiseσ0(i)={2i1i<n+12ni=n+122i1ni>n+120n2n+121(modn)σ0 is a permutation of [1,n]As proved in 6a, there is exactly one 1 in each column and row of Aσ0 is the only permutation that yields a non-zero productdet(A)=σSnsgn(σ)i=1naiσ(i)=sgn(σ0)i=1naiσ0(i)i=1n1=1=sgn(σ0)It is enough to prove sgn(σ0)=1[8(n1)8(n+1)Let k=n+12{σ0(1)=1σ0(2)=3σ0(k1)=2(k1)1=2k3=n2σ0(k)=nσ0(k+1)=2(k+1)1n=2k+1n=n+2n=2σ0(k+2)=2(k+2)1n=2k+3n=n+4n=4σ0(n)=2n1n=n1σ0={1,3,5,,n,2,4,,n1}Let us count the number of inversions in σ0There are k values in {1,3,5,,n}There are k1 values in {2,4,,n1}i[2,k]:k+1>i and σ(i)3>2=σ(k+1)k1 inversionsi[3,k]:k+2>i and σ(i)5>4=σ(k+2)k2 inversionsOther than these, there are no inversions as "halves" of permutation are orderedTotal number of inversions isP=i=1k1(ki)=(k1)+(k2)++(k(k1))=k(k1)2sgn(σ0)=(1)Psgn(σ0)=1P is evenk(k1)0mod4[k0mod4k1mod4Let k0mod4k=4mn=2k1=8m1n+1=8m8(n+1)Let k1mod4k=4m+1n=8m+21=8m+1n1=8m8(n1)

7

Let n2Let ARn×nLet i,j[1,n]:aij{1,1}Prove: det(A) is evenProof:Base case. n=2det(A)=a11a22a12a21=(1)x+(1)y{2,0,2}det(A) is evenInduction step. Let BRn×n:det(B) is evenLet CRn+1×n+1det(C)=j=1n(1)j+1c1jdet(M1j(C))j[1,n]:M1j(C)Rn×n and cij=±1(1)j+1c1jdet(M1j(C))=±det(M1j(C)) is evenSum of even numbers is evendet(C) is evenBy induction: ARn×n:det(A) is even

8

Find the determinant of Vandermonde matrixA=(1α1α12α1n11α2α22α2n11αnαn2αnn1)Solution:Let An=A of size n(1α1α12α1n11α2α22α2n11αnαn2αnn1)i[2,n]:RiR1(1α1α12α1n10α2α1α22α12α2n1α1n10αnα1αn2α12αnn1α1n1)i{n,,2}:Ciα1Ci1(10000α2α1α2(α2α1)α2n2(α2α1)0αnα1αn(αnα1)αnn2(αnα1))i[2,n]:αi=α1Ri(An)=0det(An)=0Let i[2,n]:αiα1i[2,n]:1αiα1Ri(100001α2α2n201αnαnn2)det(An)=(i=2n(αiα1))det(M11(An))=(i=2n(αiα1))det(An1)==(i1=2n(αi1α1))(i2=3n(αi2α2))(in1=nn(αin1αn1))det(A1)1==1i<jn(αjαi) this formula also includes all cases when det(An)=0