Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-2 1
1a
Calculate determinant using permutations
A
=
(
3
1
5
4
0
6
−
1
3
5
)
∈
R
3
×
3
S
3
=
123
+
132
−
213
−
231
+
312
+
321
−
|
A
|
=
∑
σ
∈
S
3
s
g
n
(
σ
)
∏
i
=
1
3
a
i
σ
(
i
)
=
=
a
11
a
22
a
33
−
a
11
a
23
a
32
−
a
12
a
21
a
33
+
a
12
a
23
a
31
+
a
13
a
21
a
32
−
a
13
a
22
a
31
=
=
0
−
54
−
20
+
(
−
6
)
+
60
−
0
=
−
20
⟹
|
A
|
=
−
20
1b
Calculate determinant using permutations
A
=
(
2
6
3
5
1
0
3
6
4
)
∈
Z
7
3
×
3
S
3
=
123
+
132
−
213
−
231
+
312
+
321
−
|
A
|
=
∑
σ
∈
S
3
s
g
n
(
σ
)
∏
i
=
1
3
a
i
σ
(
i
)
=
=
a
11
a
22
a
33
−
a
11
a
23
a
32
−
a
12
a
21
a
33
+
a
12
a
23
a
31
+
a
13
a
21
a
32
−
a
13
a
22
a
31
=
=
2
⋅
1
⋅
4
−
2
⋅
0
⋅
6
−
6
⋅
5
⋅
4
+
6
⋅
0
⋅
3
+
3
⋅
5
⋅
6
−
3
⋅
1
⋅
3
=
=
1
−
0
−
1
+
0
+
6
−
2
=
4
⟹
|
A
|
=
4
2a
Calculate determinant using minors
A
=
(
1
2
0
5
0
3
1
8
4
−
1
6
9
0
7
2
3
)
∈
R
4
×
4
Let us decompose the determinant into minors by first column
|
A
|
=
∑
i
=
1
4
(
−
1
)
i
+
1
a
i
1
|
M
i
1
(
A
)
|
=
=
1
|
M
11
(
A
)
|
−
0
|
M
12
(
A
)
|
+
4
|
M
13
(
A
)
|
−
0
|
M
14
(
A
)
|
|
M
11
(
A
)
|
=
|
3
1
8
−
1
6
9
7
2
3
|
=
54
+
63
−
16
+
3
−
54
−
336
=
−
286
|
M
13
(
A
)
|
=
|
2
0
5
3
1
8
7
2
3
|
=
6
+
0
+
30
−
0
−
32
−
35
=
−
31
|
A
|
=
1
(
−
286
)
+
4
(
−
31
)
=
−
410
2b
Calculate determinant using minors
A
=
(
1
3
0
2
1
2
i
8
2
i
0
0
−
2
6
0
4
3
)
∈
C
4
×
4
Let us decompose the determinant into minors by third row
|
A
|
=
∑
j
=
1
n
(
−
1
)
3
+
j
a
3
j
|
M
3
j
(
A
)
|
=
=
2
i
|
M
31
(
A
)
|
−
0
|
M
32
(
A
)
|
+
0
|
M
33
(
A
)
|
−
(
−
2
)
|
M
34
(
A
)
|
=
|
M
31
(
A
)
|
=
|
3
0
2
2
i
8
0
4
3
|
=
9
i
+
16
−
96
=
9
i
−
80
|
M
34
(
A
)
|
=
|
1
3
0
1
2
i
6
0
4
|
=
8
+
18
i
−
12
=
18
i
−
4
|
A
|
=
2
i
(
9
i
−
80
)
+
2
(
18
i
−
4
)
=
−
18
−
160
i
+
36
i
−
8
=
−
26
−
124
i
|
A
|
=
−
26
−
124
i
3a
Calculate determinant using Gaussian elimination
A
=
(
1
2
3
4
0
1
2
1
1
3
5
0
2
3
0
33
)
∈
R
4
×
4
(
1
2
3
4
0
1
2
1
1
3
5
0
2
3
0
33
)
→
R
4
−
2
R
1
R
3
−
R
1
(
1
2
3
4
0
1
2
1
0
1
2
−
4
0
−
1
−
6
25
)
→
R
4
+
R
2
R
3
−
R
2
(
1
2
3
4
0
1
2
1
0
0
0
−
5
0
0
−
4
26
)
→
R
3
↔
R
4
(
1
2
3
4
0
1
2
1
0
0
−
4
26
0
0
0
−
5
)
=
A
U
⟹
|
A
U
|
=
20
|
A
|
=
−
|
A
U
|
=
−
20
3b
Calculate determinant using Gaussian elimination
A
=
(
1
3
5
7
9
11
8
12
3
)
∈
Z
13
3
×
3
(
1
3
5
7
9
11
8
12
3
)
→
R
3
+
5
R
1
R
2
+
6
R
1
(
1
3
5
0
1
2
0
1
2
)
→
R
3
+
(
−
1
)
R
2
(
1
3
5
0
1
2
0
0
0
)
=
A
U
⟹
|
A
U
|
=
0
⟹
|
A
|
=
|
A
U
|
=
0
4a
Prove or disprove:
det
(
A
+
B
)
=
det
(
A
)
+
det
(
B
)
Disproof:
A
=
(
1
0
0
0
)
,
B
=
(
0
0
0
1
)
det
(
A
+
B
)
=
1
det
(
A
)
=
det
(
B
)
=
0
det
(
A
+
B
)
≠
det
(
A
)
+
det
(
B
)
4b
Let
A
∈
C
n
×
n
Prove or disprove:
det
(
A
)
―
=
det
(
A
T
―
)
Proof:
(
a
+
b
i
)
+
(
c
+
d
i
)
―
=
a
+
c
+
(
b
+
d
)
i
―
=
=
a
+
c
−
(
b
+
d
)
i
=
a
−
b
i
+
c
−
d
i
=
a
+
b
i
―
+
c
+
d
i
―
(
a
+
b
i
)
(
c
+
d
i
)
―
=
a
c
−
b
d
+
(
a
d
+
b
c
)
i
―
=
=
a
c
−
b
d
−
(
a
d
+
b
c
)
i
=
a
(
c
−
d
i
)
−
b
(
d
+
c
i
)
=
a
(
c
−
d
i
)
+
b
i
(
d
i
−
c
)
=
=
(
a
−
b
i
)
(
c
−
d
i
)
=
a
+
b
i
―
⋅
c
+
d
i
―
det
(
A
)
―
=
∑
σ
∈
S
n
s
g
n
(
σ
)
∏
i
=
1
n
a
i
σ
(
i
)
―
=
∑
σ
∈
S
n
s
g
n
(
σ
)
∏
i
=
1
n
a
i
σ
(
i
)
―
=
=
∑
σ
∈
S
n
s
g
n
(
σ
)
∏
i
=
1
n
a
i
σ
(
i
)
―
=
∑
σ
∈
S
n
s
g
n
(
σ
)
∏
i
=
1
n
(
A
T
―
)
σ
(
i
)
i
Let
i
<
j
:
σ
(
i
)
>
σ
(
j
)
⟺
σ
−
1
(
σ
(
i
)
)
=
i
<
j
=
σ
−
1
(
σ
(
j
)
)
⟹
s
g
n
(
σ
)
=
s
g
n
(
σ
−
1
)
⟹
∑
σ
∈
S
n
s
g
n
(
σ
)
∏
i
=
1
n
(
A
T
―
)
σ
(
i
)
i
=
∑
σ
−
1
∈
S
n
s
g
n
(
σ
−
1
)
∏
j
=
1
n
(
A
T
―
)
j
σ
−
1
(
j
)
=
det
(
A
T
―
)
⟹
det
(
A
)
―
=
det
(
A
T
―
)
4c
Let
A
∈
F
m
×
n
Prove or disprove:
det
(
A
A
T
)
=
det
(
A
T
A
)
Disproof:
A
=
(
1
0
0
0
1
0
)
A
T
=
(
1
0
0
1
0
0
)
A
A
T
=
(
1
0
0
1
)
A
T
A
=
(
1
0
0
0
1
0
0
0
0
)
det
(
A
A
T
)
=
1
≠
0
=
det
(
A
T
A
)
4d
Let
A
∈
F
n
×
n
Prove or disprove:
∀
i
,
j
∈
[
1
,
n
]
:
|
M
i
j
(
A
)
|
=
0
⟹
r
a
n
k
(
A
)
≤
n
−
2
Disproof for
n
=
1
:
n
=
1
⟹
r
a
n
k
(
A
)
≥
0
=
n
−
1
Proof for
n
≥
2
:
Let
r
a
n
k
(
A
)
=
n
⟹
|
A
|
≠
0
⟹
∃
i
,
j
∈
[
1
,
n
]
:
|
M
i
j
(
A
)
|
≠
0
−
Contradiction!
Let
r
a
n
k
(
A
)
=
n
−
1
⟹
There exists exactly one column that is linearly dependant on the others
Let
C
k
(
A
)
be linearly dependant on the others
Let
A
k
=
(
C
1
(
A
)
|
|
…
C
k
−
1
(
A
)
|
|
C
k
+
1
(
A
)
|
|
…
C
n
(
A
)
|
|
)
C
(
A
)
=
s
p
(
{
C
i
(
A
)
}
i
∈
[
1
,
n
]
)
=
s
p
(
{
C
i
(
A
)
}
i
∈
[
1
,
n
]
∖
{
C
k
(
A
)
}
)
=
C
(
A
k
)
⟹
r
a
n
k
(
A
k
)
=
n
−
1
A
∈
F
n
×
n
−
1
⟹
There exists exactly one row that is linearly dependant on others
Let
R
j
(
A
k
)
be linearly dependant on the others
Let
A
j
k
=
(
−
R
1
(
A
k
)
−
⋮
−
R
j
−
1
(
A
k
)
−
−
R
j
+
1
(
A
k
)
−
⋮
−
R
n
(
A
k
)
−
)
R
(
A
k
)
=
s
p
(
{
R
i
(
A
k
)
}
i
∈
[
1
,
n
]
∖
{
R
j
(
A
k
)
}
)
=
R
(
A
j
k
)
⟹
r
a
n
k
(
A
j
k
)
=
n
−
1
A
j
k
∈
F
n
−
1
×
n
−
1
⟹
|
A
j
k
|
≠
0
A
j
k
=
M
j
k
(
A
)
⟹
|
M
j
k
(
A
)
|
≠
0
−
Contradiction!
⟹
r
a
n
k
(
A
)
≤
n
−
2
5a
Prove:
∄
A
∈
R
3
×
3
:
A
2
=
(
1
0
1
0
−
1
0
0
0
1
)
Proof:
Let
∃
A
∈
R
3
×
3
:
A
2
=
(
1
0
1
0
−
1
0
0
0
1
)
|
A
2
|
=
|
1
0
1
0
−
1
0
0
0
1
|
=
1
⋅
|
−
1
0
0
1
|
=
−
1
|
A
2
|
=
|
A
|
2
≥
0
∈
R
|
A
|
2
=
−
1
−
Contradiction!
⟹
∄
A
∈
R
3
×
3
:
A
2
=
(
1
0
1
0
−
1
0
0
0
1
)
5b
Is there such matrix in
C
3
×
3
?
Solution:
A
=
(
1
0
1
2
0
−
i
0
0
0
1
)
⟹
A
2
=
(
1
0
1
0
−
1
0
0
0
1
)
6
Let
A
∈
R
n
×
n
,
a
i
j
=
{
1
j
≡
2
i
−
1
(
mod
n
)
0
otherwise
6a
Find all
n
for which
det
(
A
)
=
0
Solution:
1
≤
i
≤
n
⟹
2
≤
2
i
≤
2
n
<
2
n
+
1
j
=
n
⟺
j
≡
0
mod
n
(
2
i
−
1
)
≡
0
mod
n
⟺
2
i
=
n
+
1
⟺
{
n
is odd
i
=
n
+
1
2
⟹
[
n
is even
⟹
C
n
(
A
)
=
0
⟹
det
(
A
)
=
0
]
Let
n
be odd
Let
j
∈
[
1
,
n
]
⟹
j
(
mod
n
)
∈
[
0
,
n
−
1
]
2
i
−
1
∈
{
1
,
3
,
5
,
…
,
n
,
n
+
2
,
n
+
4
,
n
+
(
n
−
1
)
}
⟹
2
i
−
1
(
mod
n
)
∈
[
0
,
n
−
1
]
⟹
∃
i
∈
[
1
,
n
]
:
j
≡
2
i
−
1
(
mod
n
)
Let
∃
i
1
≠
i
2
∈
[
1
,
n
]
:
{
j
≡
2
i
1
−
1
(
mod
n
)
j
≡
2
i
2
−
1
(
mod
n
)
Let
i
1
<
i
2
WLOG
2
i
1
−
1
≡
2
i
2
−
1
(
mod
n
)
⟹
2
i
1
−
1
=
2
i
2
−
1
+
k
n
⟹
2
i
2
=
2
i
1
+
k
n
,
k
∈
N
0
i
1
≠
i
2
⟹
2
i
1
≠
2
i
2
⟹
k
≠
0
2
(
i
2
−
i
1
)
>
0
⟹
k
n
>
0
⟹
k
>
0
2
i
2
=
2
i
1
+
k
n
⟹
k
n
is even
⟹
k
≥
2
Let
k
=
2
a
,
a
∈
N
i
2
=
i
1
+
a
n
⟹
n
+
1
≤
i
1
+
a
n
≤
n
−
Contradiction!
⟹
∃
!
i
∈
[
1
,
n
]
:
j
≡
2
i
−
1
(
mod
n
)
⟹
In each column there is exactly one
1
Let
j
1
≡
2
i
1
−
1
(
mod
n
)
Let
j
2
≡
2
i
2
−
1
(
mod
n
)
j
1
≠
j
2
⟹
j
1
≢
j
2
(
mod
n
)
⟹
2
i
1
−
1
≢
2
i
2
−
1
(
mod
n
)
⟹
i
1
≠
i
2
⟹
In each row there is exacly one
1
⟹
det
(
A
)
=
±
1
⟹
det
(
A
)
=
0
⟺
n
is even
6b
Calculate
det
(
A
)
for
n
=
3
,
5
,
7
,
9
Solution:
Let us find all positions where
1
’s are
And calculate the sign of permutation for these positions
According to 6a, determinant is going to be
(
−
1
)
or
1
based on this sign
n
=
3
⟹
{
i
=
1
⟹
j
=
1
i
=
2
⟹
j
=
3
i
=
3
⟹
j
=
2
⟹
1
,
3
,
2
⟹
det
(
A
)
=
−
1
n
=
5
⟹
{
i
=
1
⟹
j
=
1
i
=
2
⟹
j
=
3
i
=
3
⟹
j
=
5
i
=
4
⟹
j
=
2
i
=
5
⟹
j
=
4
⟹
1
,
3
,
5
,
2
,
4
⟹
det
(
A
)
=
−
1
n
=
7
⟹
{
i
=
1
⟹
j
=
1
i
=
2
⟹
j
=
3
i
=
3
⟹
j
=
5
i
=
4
⟹
j
=
7
i
=
5
⟹
j
=
2
i
=
6
⟹
j
=
4
i
=
7
⟹
j
=
6
⟹
1
,
3
,
5
,
7
,
2
,
4
,
6
⟹
det
(
A
)
=
1
n
=
9
⟹
{
i
=
1
⟹
j
=
1
i
=
2
⟹
j
=
3
i
=
3
⟹
j
=
5
i
=
4
⟹
j
=
7
i
=
5
⟹
j
=
9
i
=
6
⟹
j
=
2
i
=
7
⟹
j
=
4
i
=
8
⟹
j
=
6
i
=
9
⟹
j
=
8
⟹
1
,
3
,
5
,
7
,
9
,
2
,
4
,
6
,
8
⟹
det
(
A
)
=
1
6 bonus
Prove:
det
(
A
)
=
1
⟺
[
8
∣
(
n
−
1
)
8
∣
(
n
+
1
)
Proof:
n
is even
⟺
det
(
A
)
=
0
⟹
det
(
A
)
≠
0
⟺
n
is odd
Let
n
be odd
Let
f
(
i
)
=
2
i
−
1
(
mod
n
)
I
m
(
f
)
=
[
0
,
n
−
1
]
⟹
f
is not a permutation of
[
1
,
n
]
∀
i
∈
[
1
,
n
]
:
f
(
i
)
≠
n
Let
σ
0
(
i
)
=
{
n
2
i
−
1
(
mod
n
)
=
0
2
i
−
1
(
mod
n
)
otherwise
σ
0
(
i
)
=
{
2
i
−
1
i
<
n
+
1
2
n
i
=
n
+
1
2
2
i
−
1
−
n
i
>
n
+
1
2
0
≡
n
≡
2
n
+
1
2
−
1
(
mod
n
)
⟹
σ
0
is a permutation of
[
1
,
n
]
As proved in 6a, there is exactly one
1
in each column and row of
A
⟹
σ
0
is the only permutation that yields a non-zero product
⟹
det
(
A
)
=
∑
σ
∈
S
n
s
g
n
(
σ
)
∏
i
=
1
n
a
i
σ
(
i
)
=
s
g
n
(
σ
0
)
∏
i
=
1
n
a
i
σ
0
(
i
)
⏟
∏
i
=
1
n
1
=
1
=
s
g
n
(
σ
0
)
⟹
It is enough to prove
s
g
n
(
σ
0
)
=
1
⟺
[
8
∣
(
n
−
1
)
8
∣
(
n
+
1
)
Let
k
=
n
+
1
2
{
σ
0
(
1
)
=
1
σ
0
(
2
)
=
3
⋮
σ
0
(
k
−
1
)
=
2
(
k
−
1
)
−
1
=
2
k
−
3
=
n
−
2
σ
0
(
k
)
=
n
σ
0
(
k
+
1
)
=
2
(
k
+
1
)
−
1
−
n
=
2
k
+
1
−
n
=
n
+
2
−
n
=
2
σ
0
(
k
+
2
)
=
2
(
k
+
2
)
−
1
−
n
=
2
k
+
3
−
n
=
n
+
4
−
n
=
4
⋮
σ
0
(
n
)
=
2
n
−
1
−
n
=
n
−
1
⟹
σ
0
=
{
1
,
3
,
5
,
…
,
n
,
2
,
4
,
…
,
n
−
1
}
Let us count the number of inversions in
σ
0
There are
k
values in
{
1
,
3
,
5
,
…
,
n
}
There are
k
−
1
values in
{
2
,
4
,
…
,
n
−
1
}
∀
i
∈
[
2
,
k
]
:
k
+
1
>
i
and
σ
(
i
)
≥
3
>
2
=
σ
(
k
+
1
)
⟹
k
−
1
inversions
∀
i
∈
[
3
,
k
]
:
k
+
2
>
i
and
σ
(
i
)
≥
5
>
4
=
σ
(
k
+
2
)
⟹
k
−
2
inversions
…
Other than these, there are no inversions as "halves" of permutation are ordered
⟹
Total number of inversions is
P
=
∑
i
=
1
k
−
1
(
k
−
i
)
=
(
k
−
1
)
+
(
k
−
2
)
+
⋯
+
(
k
−
(
k
−
1
)
)
=
k
(
k
−
1
)
2
s
g
n
(
σ
0
)
=
(
−
1
)
P
⟹
s
g
n
(
σ
0
)
=
1
⟺
P
is even
⟺
k
(
k
−
1
)
≡
0
mod
4
⟺
[
k
≡
0
mod
4
k
≡
1
mod
4
Let
k
≡
0
mod
4
⟺
k
=
4
m
⟺
n
=
2
k
−
1
=
8
m
−
1
⟺
n
+
1
=
8
m
⟺
8
∣
(
n
+
1
)
Let
k
≡
1
mod
4
⟺
k
=
4
m
+
1
⟺
n
=
8
m
+
2
−
1
=
8
m
+
1
⟺
n
−
1
=
8
m
⟺
8
∣
(
n
−
1
)
7
Let
n
≥
2
Let
A
∈
R
n
×
n
Let
∀
i
,
j
∈
[
1
,
n
]
:
a
i
j
∈
{
1
,
−
1
}
Prove:
det
(
A
)
is even
Proof:
Base case.
n
=
2
det
(
A
)
=
a
11
a
22
−
a
12
a
21
=
(
−
1
)
x
+
(
−
1
)
y
∈
{
−
2
,
0
,
2
}
⟹
det
(
A
)
is even
Induction step. Let
∀
B
∈
R
n
×
n
:
det
(
B
)
is even
Let
C
∈
R
n
+
1
×
n
+
1
det
(
C
)
=
∑
j
=
1
n
(
−
1
)
j
+
1
c
1
j
det
(
M
1
j
(
C
)
)
∀
j
∈
[
1
,
n
]
:
M
1
j
(
C
)
∈
R
n
×
n
and
c
i
j
=
±
1
⟹
(
−
1
)
j
+
1
c
1
j
det
(
M
1
j
(
C
)
)
=
±
det
(
M
1
j
(
C
)
)
is even
Sum of even numbers is even
⟹
det
(
C
)
is even
⟹
By induction:
∀
A
∈
R
n
×
n
:
det
(
A
)
is even
8
Find the determinant of Vandermonde matrix
A
=
(
1
α
1
α
1
2
…
α
1
n
−
1
1
α
2
α
2
2
…
α
2
n
−
1
⋮
⋮
⋮
⋱
⋮
⋮
⋮
⋮
⋱
⋮
1
α
n
α
n
2
…
α
n
n
−
1
)
Solution:
Let
A
n
=
A
of size
n
(
1
α
1
α
1
2
…
α
1
n
−
1
1
α
2
α
2
2
…
α
2
n
−
1
⋮
⋮
⋮
⋱
⋮
⋮
⋮
⋮
⋱
⋮
1
α
n
α
n
2
…
α
n
n
−
1
)
→
∀
i
∈
[
2
,
n
]
:
R
i
−
R
1
(
1
α
1
α
1
2
…
α
1
n
−
1
0
α
2
−
α
1
α
2
2
−
α
1
2
…
α
2
n
−
1
−
α
1
n
−
1
⋮
⋮
⋮
⋱
⋮
⋮
⋮
⋮
⋱
⋮
0
α
n
−
α
1
α
n
2
−
α
1
2
…
α
n
n
−
1
−
α
1
n
−
1
)
→
∀
i
∈
{
n
,
…
,
2
}
:
C
i
−
α
1
C
i
−
1
(
1
0
0
…
0
0
α
2
−
α
1
α
2
(
α
2
−
α
1
)
…
α
2
n
−
2
(
α
2
−
α
1
)
⋮
⋮
⋮
⋱
⋮
⋮
⋮
⋮
⋱
⋮
0
α
n
−
α
1
α
n
(
α
n
−
α
1
)
…
α
n
n
−
2
(
α
n
−
α
1
)
)
∃
i
∈
[
2
,
n
]
:
α
i
=
α
1
⟹
R
i
(
A
n
)
=
0
⟹
det
(
A
n
)
=
0
Let
∀
i
∈
[
2
,
n
]
:
α
i
≠
α
1
→
∀
i
∈
[
2
,
n
]
:
1
α
i
−
α
1
R
i
(
1
0
0
…
0
0
1
α
2
…
α
2
n
−
2
⋮
⋮
⋮
⋱
⋮
⋮
⋮
⋮
⋱
⋮
0
1
α
n
…
α
n
n
−
2
)
⟹
det
(
A
n
)
=
(
∏
i
=
2
n
(
α
i
−
α
1
)
)
det
(
M
11
(
A
n
)
)
=
(
∏
i
=
2
n
(
α
i
−
α
1
)
)
det
(
A
n
−
1
)
=
=
(
∏
i
1
=
2
n
(
α
i
1
−
α
1
)
)
⋅
(
∏
i
2
=
3
n
(
α
i
2
−
α
2
)
)
⋅
…
⋅
(
∏
i
n
−
1
=
n
n
(
α
i
n
−
1
−
α
n
−
1
)
)
⋅
det
(
A
1
)
⏟
1
=
=
∏
1
≤
i
<
j
≤
n
(
α
j
−
α
i
)
this formula also includes all cases when
det
(
A
n
)
=
0