Discrete-math 10

Discrete-math 10

Ordering relations

Let (A,) be a partially ordered set

Smallest element #definition

a is called the smallest element of A iff bA:abSometimes the smallest element is called minimum of the set

Minimal element #definition

aA is called a minimal element of A iff ¬(bA:baba)bA:b=a¬(ba)bA:(ba)(b=a)

Greatest element #definition

a is called the greatest element of A iff bA:baSometimes the biggest element is called maximum of the set

Maximal element #definition

aA is called a maximal element of A iff ¬(bA:baab)bA:b=a¬(ab)bA:(ab)(b=a)

Hasse diagram for divisibility

graph TD;

8---4
9---3
4---2
6---3
6---2
5---1
7---1
2---1
3---1

Partial order properties #theorem

Let (A,) be a partially ordered set1.If A has a smallest element, then it is unique2.If A has a smallest element, then it is minimal and the only minimal element of the set3.If in addition, (A,) is a totally ordered set and a is a minimal element,then a is also the smallestProof for 1.Let a=min(A),b=min(A)a=min(A)bAabb=min(A)aAbaabbaBy anti-symmetry of ordering relationa=b!aA:a=min(A)Proof for 2.Let a=min(A),bA:baa=min(A)ababbaa=bbA:(ba)(b=a)a is a minimal elementLet cA,such that c is a minimal elementa=min(A)acc is minimalxA:(xc)x=caca=ca is the only minimal elementProof for 3.Proof in lecture 11