Discrete-math 11

Discrete-math 11

Partial order properties (continued) #theorem

Let (A,) be a partially ordered set1.If A has a smallest element, then it is unique2.If A has a smallest element, then it is minimal and the only minimal element of the set3.If in addition, (A,) is a totally ordered set and a is a minimal element,then a is also the smallest1. and 2. proved in lecture 10Proof for 3.Let aA be a minimal element(A,) is a totally ordered set a,bA:[abbaLet bA1.baa is minimalbA:(bab=a)b=a is reflexiveaaab2.abbA:aba=min(A)

Definitions

Let (A,) be a partially ordered set,BA

Upper bound #definition

uA is called an upper bound of B iff xB:xu

Lower bound #definition

lA is called a lower bound ofB iff xB:lx

Least upper bound (supremum, sup) #definition

Let U be set of all upper bounds of BIf U has a minimum, this element is called the least upper bound of Bu=min(U)u=sup(B)

Greatest lower bound (infimum, inf) #definition

Let L be set of all lower bounds of BIf L has a maximum, this element is called the greatest lower bound of Bl=max(L)l=inf(B)

Properties of relations

Let fA×B

Complete #definition

f is complete iffaAbB:(a,b)f

To one #definition

f is to one iffaAb1,b2B:((a,b1)f(a,b2)f)b1=b2

Onto #definition

f is onto iffbBaA:(a,b)f

One-to-one #definition

f is one-to-one iffa1,a2AbB:((a1,b)f(a2,b)f)a1=a2

Example

Let fN×P(N)f={(n,X)|nN,XP(N):nX}f is complete: nN:nNf is not to one: nN:nNn{n}f is not onto: nN:(n,)ff is not one-to-one: (1,N)f(2,N)f

Function #definition

Relation fA×B is called a function ifff is complete and one-to-oneIn this case: f:ABaA!bB:(a,b)fb=f(a)

Example

Let fN×Nf={(x,y)|x,yN:y=x1}f is not complete: x=1x1N

Definitions

Let f:AB

One-to-one function (injection) #definition

f is called a one-to-one function ifff is also a one-to-one relationa1,a2A:f(a1)=f(a2)a1=a2

Onto function (surjection) #definition

f is called an onto function iff f is also an onto relationbBaA:f(a)=b

Onto and one-to-one (bijection) #definition


Example

Let f:NNf(x)=x+1f is one-to-one: f(x1)=f(x2)x1+1=x2+1x1=x2f is not onto: f(x)1

Domain of the function #definition

Let f:ABA is called a domain of fDom(f)=A

Range of the function #definition

Let f:ABB is called a range of fRange(f)=D

Image of the function #definition

Let f:ABSet of all possible values of f(x) is called image of the functionIm(f)={f(x)|xA}={bB|aA:f(a)=b}

Composition of functions #definition

Let f:AB,g:BCComposition of f with g:(gf):ACxA:(gf)(x)=g(f(x))