Discrete-math 12

Discrete-math 12

Associativity of the function composition #theorem

Letf:ABg:BCh:CDh(gf)=(hg)fProof:For function h(gf)f:AB,g:BCBy definition of composition: (gf):ACh:CDBy definition of composition: (h(gf)):ADFor function (hg)fg:BC,h:CDBy definition of composition: (hg):BDf:ABBy definition of composition: ((hg)f):AD{Dom(h(gf))=Dom((hg)f)Range(h(gf))=Range((hg)f)(1)Let aA(h(gf))(a)=h((gf)(a))=h(g(f(a)))((hg)f)(a)=(hg)(f(a))=h(g(f(a)))aA:(h(gf))(a)=((hg)f)(a)(2)(1) and (2)h(gf)=(hg)f

Properties of function composition #theorem

Let f:AB,g:BC1.If (gf) is one-to-one, then f is one-to-one2.If (gf) is onto, then g is ontoProof for 1.Let a1,a2A:f(a1)=f(a2)g is complete and to oneg(f(a1))=g(f(a2))By definition of composition: (gf)(a1)=(gf)(a2)(gf) is one-to-onea1=a2a1,a2A:f(a1)=f(a2)a1=a2Proof for 2.Let cC(gf) is ontocC:aA:(gf)(a)=cg(f(a))=cLet b=f(a),bBcC:bB:g(b)=c

Composition of two injective functions is injective #lemma

Let f1:AB,f2:BCIf f1,f2 are one-to-oneThen (f2f1) is one-to-oneProof:Let a1,a2A:(f2f1)(a1)=(f2f1)(a2)By definition of composition: (f2f1)(a1)=(f2f1)(a2)f2(f1(a1))=f2(f1(a2))f2 is one-to-onef1(a1)=f1(a2)f1 is one-to-onea1=a2a1,a2A:(f2f1)(a1)=(f2f1)(a2)a1=a2

Composition of injective functions is injective #theorem

Let f1,f2,,fn be one-to-one functions, such thatthe composition (((fn)f2)f1) is definedThen, (((fn)f2)f1) is also one-to-oneProof:Base case. Let n=1(((fn)f2)f1)=(f1)(f1) is one-to-oneInduction step. Let (((fn)f2)f1) be one-to-oneComposition of functions is associative(((fn+1)f2)f1)=(fn+1(((fn)f2)f1))Let g=(((fn)f2)f1)Then (((fn+1)f2)f1)=(fn+1g)g is one-to-one and fn+1 is one-to-oneBy the lemma above: (fn+1g) is one-to-one(((fn+1)f2)f1) is one-to-oneBase case + induction step Proved by induction