Discrete-math 13

Discrete-math 13

Invertible function #definition

Function f:AB is called invertible if there exists a function g:BA such that(gf)=IdA(fg)=IdBIn this case, g is called the inverse of f and vice versa

Example

f:RR,f(x)=x+1g:RR,g(x)=x1(gf)(x)=f(g(x))=x(fg)(x)=g(f(x))=x

Uniqueness of the inverse function #lemma

If function has in inverse, it is uniqueLet f:ABg:BA:(gf)=IdA!g:BA:(gf)=IdAProof:Let g1,g2:BA:(g1f)=IdA(fg2)=IdBLet bBg2(b)=(IdAg2)(b)=((g1f)g2)(b)=(g1(fg2))(b)==(g1IdB)(b)=g1(b)bB:g1(b)=g2(b)g1=g2

Inverse function #definition

Inverse function is usually denoted as f1

Properties of invertible functions

Inverse function is invertible #lemma

Let f:AB(f1)1=fProof:f1:BA:(f1f)=IdA,(ff1)=IdBBy definition: f1 is invertible and f is an inverse of f1

Composition of invertible functions is invertible #lemma

Let f:AB,g:BC be invertible functionsThen (gf) is invertible, and (gf)1=(f1g1)Proof:((gf)(f1g1))=(g(ff1)g1)=(g(IdBg1))=(gg1)=IdC((f1g1)(gf))=(f1(g1g)f)=(f1(IdBf))=(f1f)=IdA

Invertibility of the function #theorem

Let f:ABf1f is bijectiveProof:Let f1(f1f)=IdA,(ff1)=IdBIdA is injective(f1f) is injectivef is injectiveIdB is surjective(ff1) is surjectivef is surjectivef is bijective[1]Let f be bijectiveLet f1={(b,a)B×A|f(a)=b}f is surjectivebBaA:f(a)=bbBaA:(b,a)f1f1 is complete(1)f is injectivebB,a1,a2A:[f(a1)=f(a2)=ba1=a2]bB,a1,a2A:[(b,a1),(b,a2)f1a1=a2]f1 is to one(2)(1)(2)f1:BA,f1(b)=a(f1f)(a)=f1(f(a))=f1(b)=a(f1f)=IdA(ff1)(b)=f(f1(b))=f(a)=b(ff1)=IdBf1[2][1][2]f1f is bijective