Discrete-math 14

Discrete-math 14

Image (partial Image) #definition

Let f:ABLet XAImage of X under f is defined as following:f[X]={f(x)|xX}

Inverse Image #definition

Let f:ABLet YBInverse image of Y under f is defined as following:f1[Y]={xA|f(x)Y}

Example

f:ZZf(x)=x2f[{1,2}]={1,4}f1[{1,4}]={2,1,1,2}f1[{5}]=

Partial and Inverse Image properties #theorem

Let f:XYThen 1.BY:f[f1[B]]B2.f is surjectiveBY:f[f1[B]]=BProof for 1.Let yf[f1[B]]xf1[B]:f(x)=yxX:f(x)Bf(x)=yf(x)Bf(x)=yyBf[f1[B]]BProof for 2.Let f be surjectiveLet BY,yBf is surjectivexX:f(x)=yyBf(x)=yxf1[B]y=f(x)f[f1[B]]Bf[f1[B]]BY:B=f[f1[B]](1)Let BY:B=f[f1[B]]Let yY,B={y}yByf[f1[B]]xf1[B]:f(x)=yf1[B]XxX:f(x)=yf is surjective(2)(1)(2)f is surjectiveBY:f[f1[B]]=B

Finite set #definition

Set A is called finiteIf it is empty or if there exists nNsuch that there exists a bijective function f:NANumber of elements: |A|=nWe denote {1,2,,n}=[n]

Functions on finite sets #lemma

Let A,B be finite setsThen |A||B|f:AB:f is injectiveProof:Let f:AB:f is injectivef is injective|A|=|Im(f)||B||A||B|(1)Let |A||B|A={a1,,an},B={b1,,bn,bn+k}f:AB,i[n]:f(ai)=bii,j[n]:aiajijbibjf(ai)f(aj)f:AB:f is injective(2)(1)(2)|A||B|f:AB:f is injective

Combinatorics

Addition rule

AB=|AB|=|A|+|B|