Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Discrete-math 14
Discrete-math 14
Image (partial Image)
#definition
Let
f
:
A
→
B
Let
X
⊆
A
Image of
X
under
f
is defined as following:
f
[
X
]
=
{
f
(
x
)
|
x
∈
X
}
Inverse Image
#definition
Let
f
:
A
→
B
Let
Y
⊆
B
Inverse image of
Y
under
f
is defined as following:
f
−
1
[
Y
]
=
{
x
∈
A
|
f
(
x
)
∈
Y
}
Example
f
:
Z
→
Z
f
(
x
)
=
x
2
f
[
{
1
,
2
}
]
=
{
1
,
4
}
f
−
1
[
{
1
,
4
}
]
=
{
−
2
,
−
1
,
1
,
2
}
f
−
1
[
{
5
}
]
=
∅
Partial and Inverse Image properties
#theorem
Let
f
:
X
→
Y
Then
1.
∀
B
⊆
Y
:
f
[
f
−
1
[
B
]
]
⊆
B
2.
f
is surjective
⟺
∀
B
⊆
Y
:
f
[
f
−
1
[
B
]
]
=
B
Proof for 1.
Let
y
∈
f
[
f
−
1
[
B
]
]
∃
x
∈
f
−
1
[
B
]
:
f
(
x
)
=
y
⟺
∃
x
∈
X
:
f
(
x
)
∈
B
∧
f
(
x
)
=
y
f
(
x
)
∈
B
∧
f
(
x
)
=
y
⟹
y
∈
B
⟹
f
[
f
−
1
[
B
]
]
⊆
B
Proof for 2.
Let
f
be surjective
Let
B
⊆
Y
,
y
∈
B
f
is surjective
⟹
∃
x
∈
X
:
f
(
x
)
=
y
y
∈
B
∧
f
(
x
)
=
y
⟹
x
∈
f
−
1
[
B
]
⟹
y
=
f
(
x
)
∈
f
[
f
−
1
[
B
]
]
⟹
B
⊆
f
[
f
−
1
[
B
]
]
⟹
∀
B
⊆
Y
:
B
=
f
[
f
−
1
[
B
]
]
(
1
)
Let
∀
B
⊆
Y
:
B
=
f
[
f
−
1
[
B
]
]
Let
y
∈
Y
,
B
=
{
y
}
y
∈
B
⟹
y
∈
f
[
f
−
1
[
B
]
]
⟹
∃
x
∈
f
−
1
[
B
]
:
f
(
x
)
=
y
f
−
1
[
B
]
⊆
X
⟹
∃
x
∈
X
:
f
(
x
)
=
y
⟹
f
is surjective
(
2
)
(
1
)
∧
(
2
)
⟹
f
is surjective
⟺
∀
B
⊆
Y
:
f
[
f
−
1
[
B
]
]
=
B
Finite set
#definition
Set
A
is called finite
If it is empty or if there exists
n
∈
N
such that there exists a bijective function
f
:
N
→
A
Number of elements:
|
A
|
=
n
We denote
{
1
,
2
,
…
,
n
}
=
[
n
]
Functions on finite sets
#lemma
Let
A
,
B
≠
∅
be finite sets
Then
|
A
|
≤
|
B
|
⟺
∃
f
:
A
→
B
:
f
is injective
Proof:
Let
∃
f
:
A
→
B
:
f
is injective
f
is injective
⟹
|
A
|
=
|
I
m
(
f
)
|
≤
|
B
|
⟹
|
A
|
≤
|
B
|
(
1
)
Let
|
A
|
≤
|
B
|
A
=
{
a
1
,
…
,
a
n
}
,
B
=
{
b
1
,
…
,
b
n
,
…
b
n
+
k
}
f
:
A
→
B
,
∀
i
∈
[
n
]
:
f
(
a
i
)
=
b
i
∀
i
,
j
∈
[
n
]
:
a
i
≠
a
j
⟹
i
≠
j
⟹
b
i
≠
b
j
⟹
f
(
a
i
)
≠
f
(
a
j
)
⟹
∃
f
:
A
→
B
:
f
is injective
(
2
)
(
1
)
∧
(
2
)
⟹
|
A
|
≤
|
B
|
⟺
∃
f
:
A
→
B
:
f
is injective
Combinatorics
Addition rule
A
∩
B
=
∅
⟹
|
A
∪
B
|
=
|
A
|
+
|
B
|