Discrete-math 16

Discrete-math 16

Number of permutations/combinations (continued) #definition

How many ways there is to choose k elements from the set{1,2,,n}=[n]Solution:(Order is importantOrder is not importantWith repetitionsAnk=nkCn+k1k=(n+k1)!(n1)!k!Without repetitionsPnk=n!(nk)!Cnk=n!(nk)!k!)

With repetitions, order is not important

Multiset is a set of elements that can repeat It can be denoted as: M=a1α1a2α2anαnNumber of ways to choose k elements from the set A of size n is equal to the number ofmultisets of size k contatining elements of set AWhich is equal to number of solutions of equation α1+α2++αn=kLet us denote this equation as:000α11000α21000αn1Length of this binary string is n+k1Number of ways to choose k places in the string of length n+k1 is:(n+k1)!(n1)!k!=(n+k1k)=(n+k1n1)
How many solutions is there:x1+x2++xnk(1)i[1,n]:xi0Let xn+1=ki=1nxiEach solution for (1) is equivalent to solution ofx1++xn+xn+1=kNumber of such solutions is: (n+kk)

Properties of Binomial coefficient #lemma

nkN:(nk)NProof (combinatorial):(nk) is equal to the number of subsets of size k of element from set [n]Number of subsets is a natural number(nk)N(nk)=(nnk)Proof:(nk)=n!(nk)!k!=n!k!(nk)!=(nnk)

Pascal identity #lemma

nkN:(nk)=(n1k)+(n1k1)Proof:(n1k)+(n1k1)=(n1)!(nk1)!k!+(n1)!(nk)!(k1)!==(n1)!(nk)(nk)!k!+(n1)!k(nk)!(k)!=(n1)!n(nk)!(k)!=(nk)