Discrete-math 22

Discrete-math 22

Connected graph #definition

Simple graph G=(V,E)Is called connected if u,vV:d(u,v)<diam(G)<i.e. there is a path between any two vertices

Subgraphs of a connected graph #lemma

Let G=(V,E) be a simple connected graphLet SV,SThen xVS:xΓ(S)Proof:SuSSVvVSG is connectedexists a path from u to vu=v1v=vk+1(v1,v2,v3,,vk,vk+1)uS,vSi[1,k]:viS,vi+1SLet x=vi+1xVxVSviS and {vi,x}ExΓ(S)

Properties of distance function #lemma

d:V×VN{0}{}

Metric #definition

Let u,v,wV1.d(u,v)02.d(u,v)=0u=v3.d(u,v)=d(v,u)4.d(u,v)+d(v,w)d(u,w)Any function that satisfies these propertiesis called a metric

Relation on vertices #definition

Let relation  on Vu,vV:uvd(u,v)<This relation is:1.Reflexive: vv2.Symmetric: uvvu3.Transitive: uvvwuw is an equivalence relationLet uV[u]={vV|uv}={vV|d(u,v)<}

Connected component #definition

Let G=(V,E) be a simple graphLet uVConnected component of u is a sub-graph of G,denoted as Gu=([u],Eu) where Eu={{x,y}|x,y[u]}V/ divides V into sets of vertices of graph’s connected components

Number of connected components #definition

Let G=(V,E) be a simple graphLet |V|=n,|E|=mThen the number of connected components is at least nmProof:Base case. Let m=0There are no edges Each vertex is a separate connected componentThere are n components, nnm=n0Induction step. Let the lemma hold for m edgesLet G=(V,E),|V|=n,|E|=m+1|E|1ELet eEG{e}=(V,E{e}) has at least nm connected componentsCase 1. e connects two vertices in the same connected component of G{e}# of connected components of G is also nmn(m+1)Case 2. e connects two vertices in two different connected components# of connected components of G=# of connected components of G{e}1meaning it is now(nm)1=n(m+1)Proved by Induction

Number of edges in a connected graph #lemma

In any connected graph with n vertices there are at least n1 edgesProof:Let there be m<n1 edgesThen there are at least nm>n(n1)=1 connected componentsGraph is not connected Contradiction!

Existence of a cycle by edges number #lemma

Let G=(V,E) be a simple graph with n3 vertices and mn edgesThen G has a cycleProof:Base case. Let n=3mn=3The only possible graph with 3 vertices and 3 edges has a cycleInduction step. Let lemma hold for n verticesLet G=(V,E),|V|=n+1,|E|=mn+1Let xV be a vertex with the minimal degreeCase 0. deg(x)=0In G{x}=(V{x},E) there are n vertices and mn+1>n edgesThere is a cycle in G{x}We didn’t remove any edges G has a cycleCase 1. deg(x)=1There is no cycle containing vertex xG{x} has n vertices and m1n+11=n edgesG{x} has a cycleWe didn’t remove any edges between vertices in this cycleG has a cycleCase 2. deg(x)2Degree of any vertex in G is2Start with some edge {u,v}And begin to build the path without using the same edge twiceNumber of edges is finiteThe process stops at some pointLet the process stop at vertex vkdeg(vk)2If vk is a new vertex, we can continuevk is not a new vertexpath (v1,v2,,vk) contains a sub-path from vk to vkThere is a cycle from vk to vkProved by Induction