Discrete-math 24

Discrete-math 24

Cardinality #definition

Sets A,B are said to have the same cardinality (size, to some extent) iff there existsa bijective function f:ABDenoted as AB or |A|=|B|

Finite sets #definition

For each nNDefine In={1,2,,n}I0={}=Set A is called finite iff there exists nN{0}such that AInIn this case, we denote it as |A|=nIf there is no such n, then A is called an infinite set

Relation "have the same cardinality" #definition

Let be a relation on some set of sets is reflexive, AX:AA, we use IA:AA to show it is symmetric, ABBA,we use f1:BA to show this is transitive, ABBCAC, we use (gf):AC to show this is an equivalence relation

Naturals and Integers #lemma

ZNProof:Let f:ZN,f(z)={2z+1z02zz<0Let g:NZ,g(n)={kn=2k,kNkn=2k+1,kN{0}(gf)(z)=g(f(z))=z(gf)=IZ(fg)(n)=f(g(n))=n(fg)=IN

Naturals and Natural pairs #lemma

N×NNProof:Let N×N be an infinite chess-board:(12341(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)3(3,1)(3,2)4(4,1))Let us count pairs by diagonals:(1,1)=1(2,1)=2,(1,2)=3(1,3)=4,(2,2)=5,(3,1)=6(4,1)=7,(3,2)=8,(2,3)=9,(1,4)=10We can get to each pair in a finite number of stepsN×NNFormal function:f((n,m))=12(n+m1)(n+m)

Countable set #definition

Set A is called countable if it is finite or ANOtherwise A is not countableCardinality of N is denoted as |N|=0

Dominant set #definition

Let A,B be sets|A||B| iff exists f:AB which is injectiveThis is equivalent (without proof) to:|A||B| iff exists g:BA which is surjective
|N|<|R|And is denoted as: |R|=1|R|<|P(R)|=2|P(R)|<|P(P(R))|=3And so on

Cantor's theorem #theorem

Let A be a setThen |A|<|P(A)|Proof:Let g:AP(A),g(a)={a}g is injective|A||P(A)|Now, let f:AP(A) be a bijectionLet B={aA|af(a)}BABP(A)xA:f(x)=BCase 1. xBxBxf(x)=BxB Contradiction!Case 2. xBxBxf(x)xB Contradiction!xA:f(x)=Bf is not surjectivef:AP(A) that is a bijection|A||P(A)||A|<|P(A)|