Discrete-math 26

Discrete-math 26

Exam 2024 (2)

A is a set,|A|1Let f:P(A)×P(A)P(P(A))B,CA:f(B,C)={D|DBC}Prove or disprove:1.It is possible that f is injective2.It is possible that f is surjectiveDisproof for 1:Let AAaAf(,{a})=f({a},)=P()={}A:f is not injectiveDisproof for 2:Let AAaA{a}P(A){{a}}P(P(A))X:P(X)B,CA:f(B,C)=P(BC)f(B,C)f(B,C){{a}}A:f is nor surjective

Exam 2024 (3)

Let A be a setLet f:AALet BALet B1=B,nN:Bn+1=f1[Bn]1.Prove: if for any BA:nNBn= then f has no fixed points2.Prove or disprove: f has no fixed pointsBA:nNBn=Proof for 1:If A is an empty set, then f is an empty function which has no fixed pointsLet ALet BA:nNBn=Let f has a fixed point xLet B={x}xf[B]Base case. Let n=1xBxB1Induction step. Let xBnBn+1=f1[Bn]xBn,f(x)=xxf1[Bn]=Bn+1By induction: xnNBnnNBnContradiction!f has no fixed pointsDisproof for 2:Let A=NLet f(n)=2nLet B=NBase case. Let n=1B1=B=NInduction step. Let Bn=NBn+1=f1[Bn]=f1[N]Let xf1[N]xNf1[N]NLet xN2xNf(x)=2xxf1[{2x}]f1[N]Nf1[N]Bn+1=f1[N]=NBy Induction nN:Bn=NnNBn=N

Exam 202?

Let A=[n],nNLet G=(V,E) be a simple graphV=P(A)E={{X,Y}|X,YA[(XY)(YX)]}1.Find |V|2.Find |E|3. Show that there are exactly two vertices with odd degreeSolution for 1:|V|=|P(A)|=2|A|=2nSolution for 2:Let k[n]Let XV|P(X)|=2kNumber of supersets of X is 2nkXP(X),X is a superset of Xdeg(X)=2k+2nk2XVdeg(X)=k=0n(nk)(2k+2nk2)|E|=12k=0n(nk)(2k+2nk2)=12(k=0n2k(nk)+k=0n2nk(nk)2k=0n(nk))By binomial theorem: |E|=12(3n+3n2n+1)=3n2nSolution for 2:deg(X)=2k+2nk2Let k0,kndeg(X) is evenLet k=0X=,deg(X)=2n1Let k=nX=[n],deg(X)=2n1There are exactly two vertices of odd degree: ,[n]