Discrete-math 3

Discrete-math 3

Empty set is a subset of any set #lemma

Prove: AFormalized statement: x:xxAxFalsex:FalsexAx:TrueA

Transitivity of subsets #lemma

Prove: AB and BCACFormalized statement: x:xAxC AC

Equality of sets #definition

A=B((AB)(BA))

Exercise

Let A={2k1|kZ}Let B={2k+1|kZ}Prove: A=BLet xAkZ:x=2k1=2(k1)+1kZk1Zk=k1Z:x=2k+1kZ:xBABLet xBkZ:x=2k+1=2(k+1)1kZk+1Zk=k+1Z:x=2k1kZ:xABA(AB)(BA)A=B

Set operations #definition

Intersection

AB=x:xAxB

Union

AB=x:xAxB

Difference

AB=x:xAxB

Symmetrical difference

AB=x:x(AB)x(BA)

Complement

Domain: U (universal set)Ac={xU|xA}

Properties of set operations #definition

Idempotent law

AA=A=AAAA={x|xAxA}={x|xA}AA=AAA={x|xAxA}={x|xA}AA=A

Domination law

A=A={x|xAx}={x|xAFalse}={x|False}=

Identity law

A=AA={x|xAx}={x|xAFalse}={x|xA}=A

Commutative laws

AB=BAAB=BAAB=BA

Associative laws

A(BC)=(AB)CA(BC)=(AB)CA(BC)=(AB)C

Distributive laws

A(BC)=(AB)(AC)A(BC)=(AB)(AC)

Properties of inclusion

ABAABAAA(ACBC)ABC

Transitivity of inclusion

(ABBC)AC

Property of symmetric difference

AB=(AB)(AB)