Discrete-math 4

Discrete-math 4

Subset and intersection #lemma

Prove: ABAB=A1. Prove: ABAB=A1.a By properties of inclusion: ABA1.b Prove: AABxA:xAxAxAxAxBxABxA:xABAAB2. Prove: AB=AABxA:xAxAxBTruexBxBAB

Family of sets #definition

{Ai}iI is a family (ccollection) of setsFor example: A1={1,2,3};A2={3,5};A3={3,10}{Ai}i{1,2,3}={A1,A2,A3}

Intersection

iIAi={x|iI:xAi}

Union

iIAi={x|iI:xAi}

Exercise

Let’s define the family of sets {Ai}iN as following:iN:Ai={iN|ix}A1=NA2=N{1}Let’s prove: iNAi=NxiNAi:iN:xAixNiNAiNxN:i=1:Ai=NxAiNiNAiLet’s prove: iNAi=Suppose: x:xiNAiBy definition of {Ai}xAx+1xiNAi

Power Set #definition

P(A)={X|XA}X:XP(A)XAP({1,2})={,{1},{2},{1,2}}P()={}P({})={,{}}

Exercise

Prove: ABP(A)P(B)Let ABDP(A):DADBDP(B)P(A)P(B)Let P(A)P(B)xA:{x}A{x}P(A){x}P(B){x}BxBAB