Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Discrete-math 4
Discrete-math 4
Subset and intersection
#lemma
Prove:
A
⊆
B
↔
A
∩
B
=
A
1. Prove:
A
⊆
B
→
A
∩
B
=
A
1.a By properties of inclusion:
A
∩
B
⊆
A
1.b Prove:
A
⊆
A
∩
B
∀
x
∈
A
:
x
∈
A
≡
x
∈
A
∧
x
∈
A
≡
x
∈
A
∧
x
∈
B
≡
x
∈
A
∩
B
⟹
∀
x
∈
A
:
x
∈
A
∩
B
≡
A
⊆
A
∩
B
2. Prove:
A
∩
B
=
A
→
A
⊆
B
∀
x
∈
A
:
x
∈
A
≡
x
∈
A
∧
x
∈
B
≡
T
r
u
e
∧
x
∈
B
≡
x
∈
B
⟹
A
⊆
B
Family of sets
#definition
{
A
i
}
i
∈
I
is a family (ccollection) of sets
For example:
A
1
=
{
1
,
2
,
3
}
;
A
2
=
{
3
,
5
}
;
A
3
=
{
3
,
10
}
{
A
i
}
i
∈
{
1
,
2
,
3
}
=
{
A
1
,
A
2
,
A
3
}
Intersection
⋂
i
∈
I
A
i
=
{
x
|
∀
i
∈
I
:
x
∈
A
i
}
Union
⋃
i
∈
I
A
i
=
{
x
|
∃
i
∈
I
:
x
∈
A
i
}
Exercise
Let’s define the family of sets
{
A
i
}
i
∈
N
as following:
∀
i
∈
N
:
A
i
=
{
i
∈
N
|
i
≤
x
}
A
1
=
N
A
2
=
N
∖
{
1
}
…
Let’s prove:
⋃
i
∈
N
A
i
=
N
∀
x
∈
⋃
i
∈
N
A
i
:
∃
i
∈
N
:
x
∈
A
i
→
x
∈
N
⟹
⋃
i
∈
N
A
i
⊆
N
∀
x
∈
N
:
∃
i
=
1
:
A
i
=
N
∧
x
∈
A
i
⟹
N
⊆
⋃
i
∈
N
A
i
Let’s prove:
⋂
i
∈
N
A
i
=
∅
Suppose:
∃
x
:
x
∈
⋂
i
∈
N
A
i
By definition of
{
A
i
}
:
x
∉
A
x
+
1
⟹
x
∉
⋂
i
∈
N
A
i
Power Set
#definition
P
(
A
)
=
{
X
|
X
⊆
A
}
∀
X
:
X
∈
P
(
A
)
↔
X
⊆
A
P
(
{
1
,
2
}
)
=
{
∅
,
{
1
}
,
{
2
}
,
{
1
,
2
}
}
P
(
∅
)
=
{
∅
}
P
(
{
∅
}
)
=
{
∅
,
{
∅
}
}
Exercise
Prove:
A
⊆
B
↔
P
(
A
)
⊆
P
(
B
)
Let
A
⊆
B
:
∀
D
∈
P
(
A
)
:
D
⊆
A
→
D
⊆
B
≡
D
∈
P
(
B
)
⟹
P
(
A
)
⊆
P
(
B
)
Let
P
(
A
)
⊆
P
(
B
)
:
∀
x
∈
A
:
{
x
}
⊆
A
≡
{
x
}
∈
P
(
A
)
→
{
x
}
∈
P
(
B
)
≡
{
x
}
⊆
B
≡
x
∈
B
⟹
A
⊆
B