Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Discrete-math 5
Discrete-math 5
Induction
#definition
P
(
n
)
,
n
∈
N
1.
P
(
1
)
≡
T
2.
∀
n
∈
N
:
P
(
n
)
→
P
(
n
+
1
)
Example
P
(
n
)
≡
1
+
2
+
⋯
+
n
=
n
(
n
+
1
)
2
Prove:
∀
n
∈
N
:
P
(
n
)
Induction:
P
(
1
)
≡
1
=
1
∗
2
2
≡
T
Let
P
(
n
)
≡
T
:
1
+
2
+
⋯
+
n
=
n
(
n
+
1
)
2
⟹
1
+
2
+
⋯
+
(
n
+
1
)
=
n
(
n
+
1
)
2
+
(
n
+
1
)
=
=
n
(
n
+
1
)
+
2
(
n
+
1
)
2
=
(
n
+
1
)
(
n
+
2
)
2
⟹
(
P
(
n
)
→
P
(
n
+
1
)
)
≡
T
⟹
∀
n
∈
N
:
P
(
n
)
Hand Shaking lemma
#lemma
In a group of
n
people, everyone shakes hands with every other member of the group
The total number of handshakes is equal to
n
(
n
−
1
)
2
P
(
n
)
≡
f
(
n
)
=
n
(
n
−
1
)
2
Induction:
P
(
1
)
≡
1
∗
0
2
=
0
≡
T
Let
P
(
n
)
≡
T
:
f
(
n
+
1
)
=
f
(
n
)
+
n
=
n
(
n
−
1
)
2
+
n
=
n
(
n
−
1
)
+
2
n
2
=
(
n
+
1
)
n
2
⟹
(
P
(
n
)
→
P
(
n
+
1
)
)
≡
T
⟹
∀
n
∈
N
:
P
(
n
)
"Limited" induction
#definition
1.
P
(
m
)
≡
T
2.
∀
n
≥
m
:
P
(
n
)
→
P
(
n
+
1
)
Example
Prove:
∀
n
≥
2
:
P
(
n
)
≡
n
!
<
n
n
P
(
2
)
≡
2
!
<
2
2
≡
2
<
4
≡
T
Let
n
≥
2
,
P
(
n
)
≡
T
(
n
+
1
)
!
=
n
!
(
n
+
1
)
<
n
n
(
n
+
1
)
<
(
n
+
1
)
n
(
n
+
1
)
=
(
n
+
1
)
n
+
1
⟹
(
n
+
1
)
!
<
(
n
+
1
)
n
+
1
⟹
∀
n
≥
2
:
(
P
(
n
)
→
P
(
n
+
1
)
)
≡
T
⟹
∀
n
≥
2
:
P
(
n
)
Strong induction
#definition
1.
P
(
1
)
≡
T
2.
∀
n
∈
N
:
(
∀
k
≤
n
:
P
(
k
)
)
→
P
(
n
+
1
)
Example
Prove:
∀
n
≥
2
∈
N
:
S
(
n
)
≡
(
P
(
n
)
∨
(
S
(
a
)
∧
S
(
b
)
∧
n
=
a
⋅
b
)
)
S
(
2
)
≡
P
(
2
)
≡
T
S
(
n
+
1
)
:
1.
P
(
n
+
1
)
≡
T
⟹
S
(
n
+
1
)
≡
T
2.
P
(
n
+
1
)
≡
F
⟹
S
(
n
+
1
)
≡
S
(
a
)
∧
S
(
b
)
∧
n
+
1
=
a
⋅
b
∃
2
≤
a
,
b
≤
n
:
S
(
a
)
∧
S
(
b
)
∧
n
+
1
=
a
∗
b
Chocolate bar problem
#lemma
m
×
n
=
k
f
(
k
)
=
k
−
1
P
(
k
)
≡
f
(
k
)
=
k
−
1
P
(
1
)
≡
f
(
1
)
=
0
≡
T
m
×
n
=
k
+
1
k
+
1
=
a
+
b
;
a
≤
k
;
b
≤
k
f
(
a
)
=
a
−
1
;
f
(
b
)
=
b
−
1
f
(
k
+
1
)
=
f
(
a
)
+
f
(
b
)
+
1
=
a
+
b
−
2
+
1
=
k
+
1
−
1
=
k
⟹
f
(
k
+
1
)
=
k