Discrete-math 5

Discrete-math 5

Induction #definition

P(n),nN1.P(1)T2.nN:P(n)P(n+1)

Example

P(n)1+2++n=n(n+1)2Prove: nN:P(n)Induction:P(1)1=122TLet P(n)T:1+2++n=n(n+1)21+2++(n+1)=n(n+1)2+(n+1)==n(n+1)+2(n+1)2=(n+1)(n+2)2(P(n)P(n+1))TnN:P(n)

Hand Shaking lemma #lemma

In a group of n people, everyone shakes hands with every other member of the groupThe total number of handshakes is equal to n(n1)2P(n)f(n)=n(n1)2Induction:P(1)102=0TLet P(n)T:f(n+1)=f(n)+n=n(n1)2+n=n(n1)+2n2=(n+1)n2(P(n)P(n+1))TnN:P(n)

"Limited" induction #definition

1.P(m)T2.nm:P(n)P(n+1)

Example

Prove: n2:P(n)n!<nnP(2)2!<222<4TLet n2,P(n)T(n+1)!=n!(n+1)<nn(n+1)<(n+1)n(n+1)=(n+1)n+1(n+1)!<(n+1)n+1n2:(P(n)P(n+1))Tn2:P(n)

Strong induction #definition

1.P(1)T2.nN:(kn:P(k))P(n+1)

Example

Prove: n2N:S(n)(P(n)(S(a)S(b)n=ab))S(2)P(2)TS(n+1):1.P(n+1)TS(n+1)T2.P(n+1)FS(n+1)S(a)S(b)n+1=ab2a,bn:S(a)S(b)n+1=ab

Chocolate bar problem #lemma

m×n=kf(k)=k1P(k)f(k)=k1P(1)f(1)=0Tm×n=k+1k+1=a+b;ak;bkf(a)=a1;f(b)=b1f(k+1)=f(a)+f(b)+1=a+b2+1=k+11=kf(k+1)=k