Discrete-math 6

Discrete-math 6

Ordered pair #definition

Denotion: (a,b)(a,b)(b,a)(a,b)={{a,b (elements of the pair)},a (first item in the pair)}(a,b)=(c,d)(a=cb=d)

Cartesian product #definition

A×B={(a,b)aA,bB}

Note

In general A×BB×A
Example
A={a,b},B={1,2}A×B={(a,1),(a,2),(b,1),(b,2)}B×A={(1,a),(1,b),(2,a),(2,b)}

Properties

A×=×A=A×(BC)=(A×B)(A×C)(A×B)(C×D)(AC)×(BD)A×B=B×AA=B

Exercise

Prove or disprove: A×(BC)=(A×B)(A×C)(a,b)(A×(BC))aA(bBbC)(aAbB)(aAbC)(a,b)((A×B)(A×C))(a,b)(A×(BC))(a,b)((A×B)(A×C))

Exercise

Prove or disprove: (A×B)(C×D)(AC)×(BD)(a,b)((A×B)(C×D))(aAbB)(aCbD)(aA(aCbD))(bB(aCbD))(a(AC)(a,b)(A×D))((a,b)(C×B)b(BD))(a,b)((AC)×(BD))(a,b)(A×D)(a,b)(C×B)(a,b)((AC)×(BD))(a,b)((A×B)(C×D))(a,b)((AC)×(BD))((A×B)(C×D))((AC)×(BD))

Relation #definition

R is a relation from A to B iff RA×B

Note

Empty relation R= is also a relation, between any sets!

Relation on set #definition

Relation from A to A is called "Relation on A"

Reflexive relation #definition

aA:(a,a)R

Symmetric relation #definition

a,bA:(a,b)R(b,a)R

Transitive relation #definition

a,b,cA:((a,b)R(b,c)R)(a,c)R

Exercise

R={(a,b)a,bZ:ab}Reflexive? Yes:aaSymmetric? No:3553Transitive? Yes:abbcac

Exercise

R={(a,b)a,bZ:ab}Reflexive?00Not reflexiveSymmetric?39,93Not symmetricTransitive?ab,bcbaZ,cbZbacb=caZacTransitive