Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Discrete-math 6
Discrete-math 6
Ordered pair
#definition
Denotion:
(
a
,
b
)
(
a
,
b
)
≠
(
b
,
a
)
(
a
,
b
)
=
{
{
a
,
b
(elements of the pair)
}
,
a
(first item in the pair)
}
(
a
,
b
)
=
(
c
,
d
)
⟺
(
a
=
c
∧
b
=
d
)
Cartesian product
#definition
A
×
B
=
{
(
a
,
b
)
∣
a
∈
A
,
b
∈
B
}
Note
In general
A
×
B
≠
B
×
A
Example
A
=
{
a
,
b
}
,
B
=
{
1
,
2
}
A
×
B
=
{
(
a
,
1
)
,
(
a
,
2
)
,
(
b
,
1
)
,
(
b
,
2
)
}
B
×
A
=
{
(
1
,
a
)
,
(
1
,
b
)
,
(
2
,
a
)
,
(
2
,
b
)
}
Properties
A
×
∅
=
∅
×
A
=
∅
A
×
(
B
∪
C
)
=
(
A
×
B
)
∪
(
A
×
C
)
(
A
×
B
)
∪
(
C
×
D
)
⊆
(
A
∪
C
)
×
(
B
∪
D
)
A
×
B
=
B
×
A
⟺
A
=
B
Exercise
Prove or disprove:
A
×
(
B
∪
C
)
=
(
A
×
B
)
∪
(
A
×
C
)
(
a
,
b
)
∈
(
A
×
(
B
∪
C
)
)
⟺
a
∈
A
∧
(
b
∈
B
∨
b
∈
C
)
⟺
⟺
(
a
∈
A
∧
b
∈
B
)
∨
(
a
∈
A
∨
b
∈
C
)
⟺
(
a
,
b
)
∈
(
(
A
×
B
)
∪
(
A
×
C
)
)
(
a
,
b
)
∈
(
A
×
(
B
∪
C
)
)
⟺
(
a
,
b
)
∈
(
(
A
×
B
)
∪
(
A
×
C
)
)
Exercise
Prove or disprove:
(
A
×
B
)
∪
(
C
×
D
)
⊆
(
A
∪
C
)
×
(
B
∪
D
)
(
a
,
b
)
∈
(
(
A
×
B
)
∪
(
C
×
D
)
)
⟺
(
a
∈
A
∧
b
∈
B
)
∨
(
a
∈
C
∧
b
∈
D
)
⟺
(
a
∈
A
∨
(
a
∈
C
∧
b
∈
D
)
)
∧
(
b
∈
B
∨
(
a
∈
C
∧
b
∈
D
)
)
⟺
⟺
(
a
∈
(
A
∪
C
)
∧
(
a
,
b
)
∈
(
A
×
D
)
)
∧
(
(
a
,
b
)
∈
(
C
×
B
)
∧
b
∈
(
B
∪
D
)
)
⟺
⟺
(
a
,
b
)
∈
(
(
A
∪
C
)
×
(
B
∪
D
)
)
∧
(
a
,
b
)
∈
(
A
×
D
)
∧
(
a
,
b
)
∈
(
C
×
B
)
⟹
(
a
,
b
)
∈
(
(
A
∪
C
)
×
(
B
∪
D
)
)
(
a
,
b
)
∈
(
(
A
×
B
)
∪
(
C
×
D
)
)
⟹
(
a
,
b
)
∈
(
(
A
∪
C
)
×
(
B
∪
D
)
)
⟺
⟺
(
(
A
×
B
)
∪
(
C
×
D
)
)
⊆
(
(
A
∪
C
)
×
(
B
∪
D
)
)
Relation
#definition
R
is a relation from
A
to
B
iff
R
⊆
A
×
B
Note
Empty relation
R
∅
=
∅
is also a relation, between any sets!
Relation on set
#definition
Relation from
A
to
A
is called "Relation on
A
"
Reflexive relation
#definition
∀
a
∈
A
:
(
a
,
a
)
∈
R
Symmetric relation
#definition
∀
a
,
b
∈
A
:
(
a
,
b
)
∈
R
⟹
(
b
,
a
)
∈
R
Transitive relation
#definition
∀
a
,
b
,
c
∈
A
:
(
(
a
,
b
)
∈
R
∧
(
b
,
c
)
∈
R
)
⟹
(
a
,
c
)
∈
R
Exercise
R
=
{
(
a
,
b
)
∣
a
,
b
∈
Z
:
a
≤
b
}
Reflexive? Yes
:
a
≤
a
Symmetric? No
:
3
≤
5
∧
5
≰
3
Transitive? Yes
:
a
≤
b
∧
b
≤
c
⟹
a
≤
c
Exercise
R
=
{
(
a
,
b
)
∣
a
,
b
∈
Z
:
a
∣
b
}
Reflexive?
0
∤
0
⟹
Not reflexive
Symmetric?
3
∣
9
,
9
∤
3
⟹
Not symmetric
Transitive?
a
∣
b
,
b
∣
c
⟹
b
a
∈
Z
,
c
b
∈
Z
b
a
⋅
c
b
=
c
a
∈
Z
⟹
a
∣
c
⟹
Transitive