Discrete-math 7

Discrete-math 7

Equivalence relation #definition

Relation R is called equivalence relation if it is Reflexive, Symmetric and Transitive

Modular relation

a,b,cZ:acbc(ba)k=bacZReflexive?acac(aa)c0TSymmetric?acbc(ba)k1=bacZk2=k1=abcZbcaTransitive?acbbcdc(ba)c(db)k1=bacZ,k2=dbcZk=k1+k2=dacZacd

Equivalence classes #definition

Let R be an equivalence relation on set A, and aA[a]R={bA(a,b)R}

Quotient set #definition

A/R={[a]RaA}

Exercise

Define Z/3[0]3={bZ03b}={bZb03=kZ}={3kkZ}[1]3={3k+1kZ}[2]3={3k+2kZ}Z/3={[0]3,[1]3,[2]3}

Properties of equivalence classes #lemma

x[y]R[x]R=[y]RProof:1.x[y]R1.1Let z[x]RThen (x,z)Rx[y]R(y,x)R(y,x)R(x,z)RTransitive(y,z)Rz[y]R1.2Let z[y]RThen (y,z)Rx[y]R(y,x)RSymmetric(x,y)R(x,y)R(y,z)RTransitive(x,z)Rz[x]R2.[x]R=[y]R[x]R=[y]RReflexivex[x]R=[y]Rx[y]R1. and 2.x[y]R[x]R=[y]R

Partition of a set #definition

Family {Ai}iI is a partition of a set A if:1.iI:Ai2.i,jI:AiAjAiAj=3.iIAi=A

Example

Z/3={[0]3,[1]3,[2]3}Z/3 is a partition of Z