Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Discrete-math 7
Discrete-math 7
Equivalence relation
#definition
Relation
R
is called equivalence relation if it is Reflexive, Symmetric and Transitive
Modular relation
∀
a
,
b
,
c
∈
Z
:
a
≡
c
b
⟺
c
∣
(
b
−
a
)
⟺
k
=
b
−
a
c
∈
Z
Reflexive?
a
≡
c
a
⟺
c
∣
(
a
−
a
)
⟺
c
∣
0
⟺
T
Symmetric?
a
≡
c
b
⟺
c
∣
(
b
−
a
)
⟺
k
1
=
b
−
a
c
∈
Z
⟺
k
2
=
−
k
1
=
a
−
b
c
∈
Z
⟺
b
≡
c
a
Transitive?
a
≡
c
b
∧
b
≡
c
d
⟺
c
∣
(
b
−
a
)
∧
c
∣
(
d
−
b
)
⟺
k
1
=
b
−
a
c
∈
Z
,
k
2
=
d
−
b
c
∈
Z
⟺
k
=
k
1
+
k
2
=
d
−
a
c
∈
Z
⟺
a
≡
c
d
Equivalence classes
#definition
Let
R
be an equivalence relation on set
A
,
and
a
∈
A
[
a
]
R
=
{
b
∈
A
∣
(
a
,
b
)
∈
R
}
Quotient set
#definition
A
/
R
=
{
[
a
]
R
∣
a
∈
A
}
Exercise
Define
Z
/
≡
3
[
0
]
≡
3
=
{
b
∈
Z
∣
0
≡
3
b
}
=
{
b
∈
Z
∣
b
−
0
3
=
k
∈
Z
}
=
{
3
k
∣
k
∈
Z
}
[
1
]
≡
3
=
{
3
k
+
1
∣
k
∈
Z
}
[
2
]
≡
3
=
{
3
k
+
2
∣
k
∈
Z
}
⟹
Z
/
≡
3
=
{
[
0
]
≡
3
,
[
1
]
≡
3
,
[
2
]
≡
3
}
Properties of equivalence classes
#lemma
x
∈
[
y
]
R
⟺
[
x
]
R
=
[
y
]
R
Proof:
1.
x
∈
[
y
]
R
1.1
Let
z
∈
[
x
]
R
Then
(
x
,
z
)
∈
R
x
∈
[
y
]
R
⟹
(
y
,
x
)
∈
R
(
y
,
x
)
∈
R
∧
(
x
,
z
)
∈
R
⟹
Transitive
(
y
,
z
)
∈
R
⟺
z
∈
[
y
]
R
1.2
Let
z
∈
[
y
]
R
Then
(
y
,
z
)
∈
R
x
∈
[
y
]
R
⟹
(
y
,
x
)
∈
R
⟹
Symmetric
(
x
,
y
)
∈
R
(
x
,
y
)
∈
R
∧
(
y
,
z
)
∈
R
⟹
Transitive
(
x
,
z
)
∈
R
⟺
z
∈
[
x
]
R
2.
[
x
]
R
=
[
y
]
R
[
x
]
R
=
[
y
]
R
⟹
Reflexive
x
∈
[
x
]
R
=
[
y
]
R
⟹
x
∈
[
y
]
R
1.
and
2.
⟹
x
∈
[
y
]
R
⟺
[
x
]
R
=
[
y
]
R
Partition of a set
#definition
Family
{
A
i
}
i
∈
I
is a partition of a set
A
if:
1.
∀
i
∈
I
:
A
i
≠
∅
2.
∀
i
,
j
∈
I
:
A
i
≠
A
j
→
A
i
∩
A
j
=
∅
3.
⋃
i
∈
I
A
i
=
A
Example
Z
/
≡
3
=
{
[
0
]
≡
3
,
[
1
]
≡
3
,
[
2
]
≡
3
}
Z
/
≡
3
is a partition of
Z