Discrete-math 8

Discrete-math 8

Equivalence relations

Quotient set is a partition #theorem

Let R be an equivalence relation on AThen A/R is a partition of AProof:1.XA/R:ARLet XA/RThen aA:X=[a]RR is reflexive(a,a)Ra[a]R[a]RXXA/R:AR2.X,YA/R:XYXY=Let X,YA/RThen x,yA:X=[x]R,Y=[y]RLet also XY,XYThen zXYz[x]Rz[y]Rz[x]R[z]R=[x]Rz[y]R[z]R=[y]Rz[x]Rz[y]R[x]R=[y]RX=YContradiction!X,YA/R:XYXY=3.A/R=A3.1A/RALet XA/RThen aA:X=[a]RBy definition: [a]RAXAXA/R:XAA/RA3.2AA/RLet xAR is reflexive(x,x)Rx[x]R[x]RA/RxA/RAA/R3.1 and 3.2A/R=A1.,2. and 3.A/R is a partition of A

Existence of equivalence relation based on partition #theorem

Let {Ai}iI be a partition of AThen there is an equivalence relation R:A/R={Ai}iIProof:Let’s define R as following: R={(a,b)iI:aAibAi}Let us rephrase: R=iI(Ai×Ai)Let us prove that R is an equivalence relation: Let xABy definition of partition: xiIAiiI:xAiiI:(x,x)(Ai×Ai)xA:(x,x)RR is reflexiveLet x,yA:(x,y)RThen (x,y)RiI:(x,y)(Ai×Ai)iI:xAiyAiiI:yAixAiiI:(y,x)(Ai×Ai)(y,x)RR is symmetricLet x,y,zA:(x,y)R(y,z)RThen iI:(x,y)(Ai×Ai)iI:xAiyAiAnd also jI:(y,z)(Aj×Aj)jI:yAjzAjBy definition of partition: yAiyAjAi=AjiI:xAiyAizAiiI:xAizAiiI:(x,z)(Ai×Ai)(x,z)RR is transitiveR is reflexive, symmetric and transitiveR is an equivalence relationLet us now prove that A/R={Ai}iIProof in lecture 9