Discrete-math 9

Discrete-math 9

Existence of equivalence relation based on partition (continued) #theorem

Let {Ai}iI be a partition of AThen there is an equivalence relation R:A/R={Ai}iIProof:Let’s define R as following: R={(a,b)iI:aAibAi}Let us rephrase: R=iI(Ai×Ai)Let us prove that R is an equivalence relation: Proof in lecture 8R is an equivalence relationLet us prove the following:Ai{Ai}iI:aAi:[a]R=AiLet y[a]R,aAiThen (a,y)RjI:(a,y)Aj×AjjI:aAjyAjaAiaAjAiAjBy definition of partitionAi=AjyAiAi{Ai}iI:aAi:[a]RAi(1)Let yAiaAiyAi(a,y)Ai×Ai(a,y)iIAi×Ai=Ry[a]RAi{Ai}iI:aAi:[a]RAi(2)(1) and (2)Ai{Ai}iI:aAi:[a]R=Ai(3)Let us now prove that A/R={Ai}iILet Ar{Ai}iIBy definition of partition: AraA:aArAr=[a]RBy definition of quotient setArA/R{Ai}iIA/R(4)Let XA/RBy definition of quotient set: aA:X=[a]RBy definition of partition: aAiI:aAi(3)Ai=[a]RX=AiX{Ai}iI{Ai}iIA/R(5)(4) and (5)A/R={Ai}iI

Fact

There is 1-to-1 correspondence from equivalence relations to partitions of some set ANumber of equivalence relations on A is equal to the number of partitions of A

Example

How many equivalence relations are there on set A={1,2,3}Partitions of A1.{{1,2,3}}2.{{1},{2,3}}3.{{2},{1,3}}4.{{3},{1,2}}5.{{1},{2},{3}}

Ordering relations #definition

Relation R on set A is called anti-symmetric,if a,bA:((a,b)R(b,a)R)a=bRelation R on set A is called ordering relation,if it is reflexive, anti-symmetric and transitive

Partial ordering relation #definition

R is ordering relation(A,R)partially ordered setAnd R can also be called partial ordering relation

Total ordering relation (linear) #definition

In addition to partial ordering, a,bA:(a,b)R(b,a)R(A,R)totally ordered set

Example - "Divides" relation

a,bN:abkN:ba=kReflexive: nN:nnAnti-symmetric: a,bN:(abba)a=bTransitive: a,b,cN:(abbc)acPartial: 3553

Example - "Lexicographic order" relation

(a,b),(c,d)A:(a,b)lex(c,d)(a<c)(a=cbd)Lexicographic order is a total ordering relation