Exam 2023 (2A)

1b

Let G=(V,E) be a simple non-empty finite connected graphLet eE:G=(V,E{e}) has two connected componentsProve: vV:deg(v) is oddProof:Let vV:deg(v) is evenLet e={v,u}deg(v) in G is equal to deg(v) in Git is oddu[w]deg(w)=2|Ev|=u[w]{v}deg(w)eveneven+deg(v)odd2|Ev| is oddContradiction!vV:deg(v) is odd

2a

Let A be a setLet R,S be order relations on AProve or disprove: RS is an order relation on ARSSRDisproof:A={1,2,3}R=IA{(1,2)}S=IA{(1,3)}RS=IA{(1,2),(1,3)}

2b

Let A,B be setsProve or disprove: P(A)P(B)=P(AB)(AB)(BA)Proof:Let BABAABP(AB),ABP(A),ABP(B)P(A)P(B)P(AB)P(A)P(B)=P(AB)(AB=ABA)(AB=BAB) is trivial

2c

5

aR:r0R define an open-ball of radius r around a to beB(a,r)={xR||xa|<r}Set UR is called open if aU:B(a,r)USet X is called closed if Xc is open

5a

Is there a subset of R which is both open and closed?Solution: is open (vacuously true)esertc=R is open, B(x,1)R is also closed

5b

Let {Ui}i[n] be family of setsProve: i[n]:Ui is openi=1nUi is openProof:Let xi=1nUii[n]:xUii[n]:B(x,ri)UinNB={r1,r2,,rn} is finiterB:riB:rirri=ri[n]:rriB(x,r)UiB(x,r)i=1nUi