Exam 2023 (2B)

1b

Prove: n evenN: tree G=(V,E):vV:deg(v){1,n2}Proof:Let us build such a graphLet nN be evenLet two vertices have an edge between themLet’s call these vertices u,vNow let us add n22 vertices to Γ(v)deg(v)=n22+1=n2Now let us add another n22 vertices to Γ(u)deg(u)=n22+1=n2Degrees of all vertices except u,v are 1deg(u)=deg(v)=n2There are no cycles and the graph is connectedG is a tree
graph LR
5(...)
6(...)
9(...)
10(...)

1---2
3---1
4---1
5---1
6---1
2---7
2---8
2---9
2---10

2a

Let f:ABProve or disprove: X,YA:f[XY]=f[X]f[Y]Disproof:Let 1BLet f(x)=1Let XYf[XY]={1}f[X]f[Y]={1}{1}=

2b

Prove or disprove: A,B,C:A(BC)=(AB)(AC)Disproof:Left: xA,x(BC)xA(xBxC)Right: (xAxB)(xAxC)=xA(xBxC)A(BC)=(AB)(AC)

2c

Let A be a setLet R be a relation on ALet S be a relation on AS={(a,b)A×A|cA:(a,c)R(c,b)R}Prove or disprove: R is an equivalence relationR=SDisproof:A={1,2,3}R=IAS=IA{(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)}

5

Let X be a setTP(X) is called symmetric-complement if1.T2.A,BT:ABT3.AT:AcT

5a

Let X be a setLet TP(X) be a symmetric-complementIs T?Solution:AT:=AAT

5b

Let X be a setLet T,SP(X) be a symmetric-complementsProve: TS is a symmetric-complementProof:T,STSTSLet A,BTSA,BTABTA,BSABSABTSATAcTASAcSAcTS

5c

Let X be a setLet T,SP(X) be a symmetric-complementsProve: TS is a symmetric-complementTSSTProof:Let TS (WLOG)TS=STS is a symmetric-complementLet TS be a symmetric-complementLet ATS,BSTA,BTSLet ABS(AB)BSASContradiction!ABSABTA(AB)TBTContradiction!ABTABTSContradiction!TS=ST=TSST