Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Exam 2023 (2B)
1b
Prove:
∀
n
even
∈
N
:
∃
tree
G
=
(
V
,
E
)
:
∀
v
∈
V
:
d
e
g
(
v
)
∈
{
1
,
n
2
}
Proof:
Let us build such a graph
Let
n
∈
N
be even
Let two vertices have an edge between them
Let’s call these vertices
u
,
v
Now let us add
n
−
2
2
vertices to
Γ
(
v
)
⟹
d
e
g
(
v
)
=
n
−
2
2
+
1
=
n
2
Now let us add another
n
−
2
2
vertices to
Γ
(
u
)
⟹
d
e
g
(
u
)
=
n
−
2
2
+
1
=
n
2
Degrees of all vertices except
u
,
v
are
1
d
e
g
(
u
)
=
d
e
g
(
v
)
=
n
2
There are no cycles and the graph is connected
⟹
G
is a tree
graph LR 5(...) 6(...) 9(...) 10(...) 1---2 3---1 4---1 5---1 6---1 2---7 2---8 2---9 2---10
2a
Let
f
:
A
→
B
Prove or disprove:
∀
X
,
Y
⊆
A
:
f
[
X
∖
Y
]
=
f
[
X
]
∖
f
[
Y
]
Disproof:
Let
1
∈
B
Let
f
(
x
)
=
1
Let
X
≠
Y
f
[
X
∖
Y
⏟
≠
∅
]
=
{
1
}
f
[
X
]
∖
f
[
Y
]
=
{
1
}
∖
{
1
}
=
∅
2b
Prove or disprove:
∀
A
,
B
,
C
:
A
∖
(
B
∩
C
)
=
(
A
∖
B
)
∪
(
A
∖
C
)
Disproof:
Left:
x
∈
A
,
x
∉
(
B
∩
C
)
⟹
x
∈
A
∧
(
x
∉
B
∨
x
∉
C
)
Right:
(
x
∈
A
∧
x
∉
B
)
∨
(
x
∈
A
∧
x
∉
C
)
=
x
∈
A
∧
(
x
∉
B
∨
x
∉
C
)
⟹
A
∖
(
B
∩
C
)
=
(
A
∖
B
)
∪
(
A
∖
C
)
2c
Let
A
be a set
Let
R
be a relation on
A
Let
S
be a relation on
A
S
=
{
(
a
,
b
)
∈
A
×
A
|
∀
c
∈
A
:
(
a
,
c
)
∈
R
⟹
(
c
,
b
)
∈
R
}
Prove or disprove:
R
is an equivalence relation
⟹
R
=
S
Disproof:
A
=
{
1
,
2
,
3
}
R
=
I
A
S
=
I
A
∪
{
(
1
,
2
)
,
(
1
,
3
)
,
(
2
,
1
)
,
(
2
,
3
)
,
(
3
,
1
)
,
(
3
,
2
)
}
5
Let
X
be a set
T
⊆
P
(
X
)
is called symmetric-complement if
1.
T
≠
∅
2.
∀
A
,
B
∈
T
:
A
△
B
∈
T
3.
∀
A
∈
T
:
A
c
∈
T
5a
Let
X
be a set
Let
T
⊆
P
(
X
)
be a symmetric-complement
Is
∅
∈
T
?
Solution:
∀
A
∈
T
:
∅
=
A
△
A
∈
T
5b
Let
X
be a set
Let
T
,
S
⊆
P
(
X
)
be a symmetric-complements
Prove:
T
∩
S
is a symmetric-complement
Proof:
∅
∈
T
,
∅
∈
S
⟹
∅
∈
T
∩
S
⟹
T
∩
S
≠
∅
Let
A
,
B
∈
T
∩
S
⟹
A
,
B
∈
T
⟹
A
△
B
∈
T
⟹
A
,
B
∈
S
⟹
A
△
B
∈
S
⟹
A
△
B
∈
T
∩
S
A
∈
T
⟹
A
c
∈
T
A
∈
S
⟹
A
c
∈
S
⟹
A
c
∈
T
∩
S
5c
Let
X
be a set
Let
T
,
S
⊆
P
(
X
)
be a symmetric-complements
Prove:
T
∪
S
is a symmetric-complement
⟺
T
⊆
S
∨
S
⊆
T
Proof:
Let
T
⊆
S
(WLOG)
⟹
T
∪
S
=
S
⟹
T
∪
S
is a symmetric-complement
Let
T
∪
S
be a symmetric-complement
Let
A
∈
T
∖
S
,
B
∈
S
∖
T
A
,
B
∈
T
∪
S
Let
A
△
B
∈
S
⟹
(
A
△
B
)
△
B
∈
S
⟹
A
∈
S
−
Contradiction!
⟹
A
△
B
∉
S
⟹
A
△
B
∈
T
⟹
A
△
(
A
△
B
)
∈
T
⟹
B
∈
T
−
Contradiction!
⟹
A
△
B
∉
T
⟹
A
△
B
∉
T
∪
S
−
Contradiction!
⟹
T
∖
S
=
∅
∨
S
∖
T
=
∅
⟹
T
⊆
S
∨
S
⊆
T