Exam 2023 (A)

1a

1b

Let n4 be an even numberProve by induction:  tree T=(V,E):|V|=n:vV:deg(v){1,3}Proof:Base case. Let n=4
graph TD

1---2
1---3
1---4
Induction step. Let the statement hold for nLet G=(V,E) be a tree with n verticesLet vV:deg(v){1,3}G is a treevV:deg(v)=1Let u,wVLet G=(V{u,w},E{{v,u},{v,w}})deg(v)=3 in Gdeg(u)=deg(w)=1 in GvV{u,w}:deg(v){1,3}G has n+2 verticesProved by Induction

2a

Prove or disprove: R,S are equivalence relations on ARS is an equivalence relation on ADisproof:aA:(a,a)R,(a,a)S(a,a)RSRS is not reflexiveRS is not an equivalence relation

2b

Let f:XYLet D,CYProve or disprove: f1[CD]=f1[C]f1[D]Proof:xf1[CD]yCD:f(x)=yyCyDxf1[C]xf1[D]xf1[C]f1[D]f1[CD]=f1[C]f1[D]

3

Let A be a set such that |A|2Let f:A×P(A)P(P(A)),f(x,B)={DB|xD}

3a

Prove: f is not injectiveProof:|A|2abALet abAab(a,)(b,)f(a,)=f(b,)=f is not injective

3b

Prove: xA:B1,B2P(A):f(x,B1B2)=f(x,B1)f(x,B2)Proof:Let xALet B1,B2P(A)f(x,B1B2)={DB1B2|xD}f(x,B1)f(x,B2)={DB1|xD}{DB2|xD}Let xB1B2xB1 (symmetric, WLOG)f(x,B1B2)= and f(x,B1)=f(x,B1B2)=f(x,B1)f(x,B2)=Let xB1B2Let Cf(x,B1B2)xCCB1B2CB1CB2Cf(x,B1)Cf(x,B2)Cf(x,B1)f(x,B2)f(x,B1B2)f(x,B1)f(x,B2)Let Cf(x,B1)f(x,B2)xCCB1CB2CB1B2Cf(x,B1B2)f(x,B1)f(x,B2)f(x,B1B2)f(x,B1B2)=f(x,B1)f(x,B2)

3c

Prove: xA,B1,B2P(A):f(x,B1B2)f(x,B1)f(x,B2)Proof:|A|2{a,b}ALet x=aLet B1={a},B2={b}f(x,B1B2)=f(x,{a,b})={{a},{a,b}}f(x,B1)f(x,B2)={{a}}={{a}}f(x,B1B2)f(x,B1)f(x,B2)

4a

There are 30 students and two buses (red, green) with 15 placesHow many ways are there to split 30 students into two groups of 15?Solution:No order, no repetition, buses are distinct(3015)

4b

How many ways are there to seat 30 students in a 50-place bus with numbered seats?Solution:Let us first choose 30 placesAnd then arrange children in them, as places are distinct(5030)30!=50!30!20!30!=50!20!

4c

Teacher wants to assign one of the two tasks to some studentsNo student can do two tasks. How many ways to assign tasks are there?Solution:Let i[0,30]Let i students be assigned with first taskWhich is (30i)Let some of 30i students be assigned with second taskWhich is 230ii=030(30i)(230i)1i=330

4d

30 students stand in a queueHow many ways are there to rearrange them such thatno student stands after the student he was beforeSolution:Let us choose 1i29Let Ai={orders where (i,i+1) stand as they were}There are |Ai|=(291)(301)! such ordersLet us now choose k such indices|Ai1Ai2Aik|=(29k)(30k)!By Inclusion-Exclusion principle: |i=129Ai|=k=129(1)k1(29k)(30k)!The total number of orders is 30!The number of "bad" orders is |i=129Ai|The answer is: 30!k=129(1)k1(29k)(30k)!=30!+k=129(1)k(29k)(30k)!==k=029(1)k(29k)(30k)!

5

R is a relation on AR is called "well-established" ifXA:zX:xX:(x,z)Rx=zz is then called minimal element of X

5a

Is R an order relation on A?Solution:Let A={a}Let R=R is well-established, as for all other X subsets of A the implication is vacuously-true(a,a)RR is not reflexiveR is not an order relation

5b

Let A,B setsLet R be a well-established relation on ALet S be a well-established relation on BLet T be a lexicographic order of R,SMeaning T is a relation on A×B(a1,b1)T(a2,b2)[(a1a2)(a1Ra2)][(a1=a2)(b1Sb2)]Prove: T is well-established on A×BProof:Let XA×BLet X1={a|bB:(a,b)X}XX1z1X1:aX1:(a,z1)Ra=z1Let X2={b|(z1,b)X}X1X2z2X2:bX2:(b,z2)Sb=z2z1X1,z2X2(z1,z2)XLet (a,b)X(a,b)T(z1,z2)[(az1)(aRz1)][(a=z1)(bSz2)]Let az1aRz1a=z1Contradiction!a=z1bSz2b=z2(a,b)=(z1,z2)(a,b)X:(a,b)T(z1,z2)(a,b)=(z1,z2)

5c

Let A be a setLet  be a relation on P(A)Prove:  is well-established on P(A)A is finiteProof:Let X={BA|B is infinite}XP(A)Let X is well-established on P(A)YX:BX:BYB=YY is infiniteYyYY is infiniteY{y} is also infiniteY{y}XY{y}YY{y}YContradiction!X=A is finite