Exam 2023 (B)

5

Sets A,B are called equivalent if f:AB:f is bijective

5a

Are these sets equivalent?A={nN|n is even}B={nN|n is odd}Solution:Let f:AB,f(n)=n1Let nmALet n<m WLOGf(m)=m1>f(n)=n1f is injectiveLet kBkNk+1Nk is oddk+1 is evenk+1Af(k+1)=k+11=kf is surjectivef is bijectiveA,B are equivalent

5b

Let A be a setLet R be a relation on P(A)B,CP(A):(B,C)RB is equivalent to CProve: R is an equivalence relationProof:Let BP(A)IB:BB is biejctiveB is equivalent to B(B,B)RR is reflexiveLet B,CP(A)(B,C)Rf:BC:f is bijectivef1:CB:f1 bijectiveC is equivalent to B(C,B)RR is symmetricLet B,C,DP(A)(B,C),(C,D)Rf:BC:f is bijective,g:CD:g is bijectivef is bijective(gf):BD is bijective(B,D)RR is transitiveR is an equivalence relation

5c

Prove: {0,1}A,P(A) are equivalentProof:Let F:P(A){0,1}A,F(X)={(x,fX(x))|xA}Where fX:A{0,1},fX(x)={1xX0xXLet XYP(A)XYxX:xY (WLOG)(x,1)F(X),(x,1)F(Y)F(X)F(Y)F is injectiveLet g{0,1}AxA:y{0,1}:(x,y)gLet X={xA|(x,1)g}F(X)={(x,fX(x))|xA}={(x,1)|xX}{(x,0)|xAX}=gF is surjectiveF is bijective{0,1}A,P(A) are equivalent