Exam 2024 (B)

5

Functions f,g:P(N)P(N) are called nice to each other ifA,BP(N):ABf(B)f(A)ABg(B)g(A)And AP(N):Af(g(A))Ag(f(A))

5a

Find two functions that are nice to each otherSolution:Let AP(N):f(A)=g(A)=NLet ABP(N)f(B)=f(A)=Nf(A)f(B)g(A)=g(B)=Ng(A)g(B)AN=f(g(A))=g(f(A))

5b

Prove: f,g are nice to each otherA,BP(N):Af(B)Bg(A)Proof:Let f,g be nice to each otherLet A,BP(N)Let Af(B)g(f(B))g(A)Bg(A)Let Bg(A)f(g(A))f(B)Af(B)Let A,BP(N):Af(B)Bg(A)Let A,BP(N)g(A)Bg(A)Af(g(A)B)f(B)Af(B)Bg(f(B)A)Let ABBf(g(B))Af(g(B))g(B)g(A)Bg(f(B))Ag(f(B))f(B)f(A)f,g are nice to each other

5c

Let f,g be nice to each otherProve: f=fgfProof:Dom(fgf)=P(N)=Dom(f)Range(fgf)=P(N)=Range(f)Let AP(N)Ag(f(A))f(g(f(A)))f(A)g(f(A))g(f(A))f(A)f(g(f(A)))f(A)=f(g(f(A)))f=fgf

5d

Let f,g be nice to each otherProve: A,BP(N):f(AB)=f(A)f(B)Proof:Let A,BP(N)xf(AB){x}f(AB)ABg({x})Ag({x})Bg({x}){x}f(A){x}f(B){x}f(A)f(B)xf(A)f(B)f(AB)=f(A)f(B)